1716-04-08 Bernoulli Johann I-Wolff Christian: Unterschied zwischen den Versionen
(Importing text file) |
(Importing text file) |
||
Zeile 5: | Zeile 5: | ||
<!-- Begin Bilder --> | <!-- Begin Bilder --> | ||
{|border="0" | {|border="0" | ||
|<html><a href="http://www.ub.unibas.ch/digi/ | |<html><a href="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_001r.jpg" target="_new"><img src="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/thumb/BAU_5_000057816_001r.jpg" alt="Briefseite" title="Briefseite" /></a> </html> | ||
|<html><a href="http://www.ub.unibas.ch/digi/ | |<html><a href="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_001v.jpg" target="_new"><img src="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/thumb/BAU_5_000057816_001v.jpg" alt="Briefseite" title="Briefseite" /></a> </html> | ||
|<html><a href="http://www.ub.unibas.ch/digi/ | |<html><a href="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_002r.jpg" target="_new"><img src="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/thumb/BAU_5_000057816_002r.jpg" alt="Briefseite" title="Briefseite" /></a> </html> | ||
|<html><a href="http://www.ub.unibas.ch/digi/ | |<html><a href="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_002v.jpg" target="_new"><img src="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/thumb/BAU_5_000057816_002v.jpg" alt="Briefseite" title="Briefseite" /></a> </html> | ||
|<html><a href="http://www.ub.unibas.ch/digi/ | |<html><a href="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_003r.jpg" target="_new"><img src="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/thumb/BAU_5_000057816_003r.jpg" alt="Briefseite" title="Briefseite" /></a> </html> | ||
|<html><a href="http://www.ub.unibas.ch/digi/ | |<html><a href="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_003v.jpg" target="_new"><img src="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/thumb/BAU_5_000057816_003v.jpg" alt="Briefseite" title="Briefseite" /></a> </html> | ||
|<html><a href="http://www.ub.unibas.ch/digi/ | |<html><a href="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_004r.jpg" target="_new"><img src="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/thumb/BAU_5_000057816_004r.jpg" alt="Briefseite" title="Briefseite" /></a> </html> | ||
|<html><a href="http://www.ub.unibas.ch/digi/ | |<html><a href="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_004v.jpg" target="_new"><img src="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/thumb/BAU_5_000057816_004v.jpg" alt="Briefseite" title="Briefseite" /></a> </html> | ||
|- | |- | ||
|<html><a href="http://www.ub.unibas.ch/digi/ | |<html><a href="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_005r.jpg" target="_new"><img src="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/thumb/BAU_5_000057816_005r.jpg" alt="Briefseite" title="Briefseite" /></a> </html> | ||
|<html><a href="http://www.ub.unibas.ch/digi/ | |<html><a href="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_005v.jpg" target="_new"><img src="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/thumb/BAU_5_000057816_005v.jpg" alt="Briefseite" title="Briefseite" /></a> </html> | ||
|<html><a href="http://www.ub.unibas.ch/digi/ | |<html><a href="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_006r.jpg" target="_new"><img src="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/thumb/BAU_5_000057816_006r.jpg" alt="Briefseite" title="Briefseite" /></a> </html> | ||
|<html><a href="http://www.ub.unibas.ch/digi/ | |<html><a href="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_006v.jpg" target="_new"><img src="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/thumb/BAU_5_000057816_006v.jpg" alt="Briefseite" title="Briefseite" /></a> </html> | ||
|<html><a href="http://www.ub.unibas.ch/digi/ | |<html><a href="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_007r.jpg" target="_new"><img src="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/thumb/BAU_5_000057816_007r.jpg" alt="Briefseite" title="Briefseite" /></a> </html> | ||
|<html><a href="http://www.ub.unibas.ch/digi/ | |<html><a href="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_007v.jpg" target="_new"><img src="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/thumb/BAU_5_000057816_007v.jpg" alt="Briefseite" title="Briefseite" /></a> </html> | ||
|<html><a href="http://www.ub.unibas.ch/digi/ | |<html><a href="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_008r.jpg" target="_new"><img src="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/thumb/BAU_5_000057816_008r.jpg" alt="Briefseite" title="Briefseite" /></a> </html> | ||
|<html><a href="http://www.ub.unibas.ch/digi/ | |<html><a href="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_008v.jpg" target="_new"><img src="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/thumb/BAU_5_000057816_008v.jpg" alt="Briefseite" title="Briefseite" /></a> </html> | ||
|- | |- | ||
|<html><a href="http://www.ub.unibas.ch/digi/ | |<html><a href="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_009r.jpg" target="_new"><img src="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/thumb/BAU_5_000057816_009r.jpg" alt="Briefseite" title="Briefseite" /></a> </html> | ||
|<html><a href="http://www.ub.unibas.ch/digi/ | |<html><a href="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_009v.jpg" target="_new"><img src="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/thumb/BAU_5_000057816_009v.jpg" alt="Briefseite" title="Briefseite" /></a> </html> | ||
|<html><a href="http://www.ub.unibas.ch/digi/ | |<html><a href="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_010r.jpg" target="_new"><img src="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/thumb/BAU_5_000057816_010r.jpg" alt="Briefseite" title="Briefseite" /></a> </html> | ||
|<html><a href="http://www.ub.unibas.ch/digi/ | |<html><a href="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_010v.jpg" target="_new"><img src="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/thumb/BAU_5_000057816_010v.jpg" alt="Briefseite" title="Briefseite" /></a> </html> | ||
|<html><a href="http://www.ub.unibas.ch/digi/ | |<html><a href="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_011r.jpg" target="_new"><img src="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/thumb/BAU_5_000057816_011r.jpg" alt="Briefseite" title="Briefseite" /></a> </html> | ||
|<html><a href="http://www.ub.unibas.ch/digi/ | |<html><a href="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_011v.jpg" target="_new"><img src="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/thumb/BAU_5_000057816_011v.jpg" alt="Briefseite" title="Briefseite" /></a> </html> | ||
|<html><a href="http://www.ub.unibas.ch/digi/ | |<html><a href="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_012r.jpg" target="_new"><img src="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/thumb/BAU_5_000057816_012r.jpg" alt="Briefseite" title="Briefseite" /></a> </html> | ||
|<html><a href="http://www.ub.unibas.ch/digi/ | |<html><a href="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_012v.jpg" target="_new"><img src="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/thumb/BAU_5_000057816_012v.jpg" alt="Briefseite" title="Briefseite" /></a> </html> | ||
|- | |- | ||
|<html><a href="http://www.ub.unibas.ch/digi/ | |<html><a href="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_013r.jpg" target="_new"><img src="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/thumb/BAU_5_000057816_013r.jpg" alt="Briefseite" title="Briefseite" /></a> </html> | ||
|<html><a href="http://www.ub.unibas.ch/digi/ | |<html><a href="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_013v.jpg" target="_new"><img src="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/thumb/BAU_5_000057816_013v.jpg" alt="Briefseite" title="Briefseite" /></a> </html> | ||
|<html><a href="http://www.ub.unibas.ch/digi/ | |<html><a href="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_014r.jpg" target="_new"><img src="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/thumb/BAU_5_000057816_014r.jpg" alt="Briefseite" title="Briefseite" /></a> </html> | ||
|<html><a href="http://www.ub.unibas.ch/digi/ | |<html><a href="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_014v.jpg" target="_new"><img src="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/thumb/BAU_5_000057816_014v.jpg" alt="Briefseite" title="Briefseite" /></a> </html> | ||
|<html><a href="http://www.ub.unibas.ch/digi/ | |<html><a href="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_015r.jpg" target="_new"><img src="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/thumb/BAU_5_000057816_015r.jpg" alt="Briefseite" title="Briefseite" /></a> </html> | ||
|<html><a href="http://www.ub.unibas.ch/digi/ | |<html><a href="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_015v.jpg" target="_new"><img src="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/thumb/BAU_5_000057816_015v.jpg" alt="Briefseite" title="Briefseite" /></a> </html> | ||
|<html><a href="http://www.ub.unibas.ch/digi/ | |<html><a href="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_016r.jpg" target="_new"><img src="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/thumb/BAU_5_000057816_016r.jpg" alt="Briefseite" title="Briefseite" /></a> </html> | ||
|<html><a href="http://www.ub.unibas.ch/digi/ | |<html><a href="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_016v.jpg" target="_new"><img src="http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/thumb/BAU_5_000057816_016v.jpg" alt="Briefseite" title="Briefseite" /></a> </html> | ||
|- | |- | ||
|} | |} | ||
Zeile 60: | Zeile 60: | ||
<!-- Begin Transkription --> | <!-- Begin Transkription --> | ||
[[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/ | [[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_002r.jpg]] Viro Celeberrimo atque Nobilissimo | ||
Dn.<sup>o</sup> Christiano Wolfio | Dn.<sup>o</sup> Christiano Wolfio | ||
Zeile 68: | Zeile 68: | ||
Johannes Bernoulli | Johannes Bernoulli | ||
Litteras Tuas, Vir Nobilissime, jam X. 8bris anni superioris ad me datas vix demum ante sesquimensem accepi cum Tomo altero Operis Tui incomparabilis Elem. Mathem.<ref>Wolff, Christian, ''Elementa matheseos universae'', Bd. II 1715 und 1733</ref> quo me munere egregio sane et pretioso mactare voluisti; refero pro eo gratias, quas possum maximas donec occasio se mihi praebeat animum gratum reipsa testandi; vocavi hoc opus "incomparabile" et merito quidem, nam id in hoc genere sine exemplo existit, sive respiciam absolutam ejus perfectionem utpote complectentis omnes et singulas matheseos partes imo et analyses nostras novas infinite parvorum quae in aliis cursibus Mathem. alto silentio praetereuntur; sive considerem ordinem, exactitudinem et elegantiam, quibus omnia pertractas, sive denique attendam ad integram totius operis concatenationem et concinnam dispositionem; profecto mihi omnia arrident: quare soleo discipulis meis, si completum cursum Math. habere velint commendare ut sibi comparent hunc a Te editum. Cum nuper studiosis quibusdam calculum differentialem et integralem explicarem, conferremque proin [[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/ | Litteras Tuas, Vir Nobilissime, jam X. 8bris anni superioris ad me datas vix demum ante sesquimensem accepi cum Tomo altero Operis Tui incomparabilis Elem. Mathem.<ref>Wolff, Christian, ''Elementa matheseos universae'', Bd. II 1715 und 1733</ref> quo me munere egregio sane et pretioso mactare voluisti; refero pro eo gratias, quas possum maximas donec occasio se mihi praebeat animum gratum reipsa testandi; vocavi hoc opus "incomparabile" et merito quidem, nam id in hoc genere sine exemplo existit, sive respiciam absolutam ejus perfectionem utpote complectentis omnes et singulas matheseos partes imo et analyses nostras novas infinite parvorum quae in aliis cursibus Mathem. alto silentio praetereuntur; sive considerem ordinem, exactitudinem et elegantiam, quibus omnia pertractas, sive denique attendam ad integram totius operis concatenationem et concinnam dispositionem; profecto mihi omnia arrident: quare soleo discipulis meis, si completum cursum Math. habere velint commendare ut sibi comparent hunc a Te editum. Cum nuper studiosis quibusdam calculum differentialem et integralem explicarem, conferremque proin [[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_002v.jpg]] cum iis quae in primo Tui Operis Tomo<ref>[Text folgt]</ref> hac super re habes observavi paucos aliquos lapsus haud dubie festinando admissos, haud quidem graves, qui tamen Tyrones remorari queunt adeoque correctionem merentur. | ||
De Lexico Tuo Mathematico<ref>Wolff, Christian, ''Mathematisches Lexicon'', Leipzig 1716</ref> multum quoque mihi promitto siquidem eadem, qua Elementa reliquaque Tua scripta dexteritate elaboratum prodibit de quo nullus dubito. Exemplar ejus, quod promittis, ubi typis descriptum fuerit augebit novo additamento<ref>Im Manuskript steht irrtümlich "addidamentum"</ref> debitorum meorum summam. Weidlerus suam dissertationem<ref>Weidler, Johann Friedrich, ''Exercitatio de phosphoro mercuriali praecipue eo qui in barometris lucet et eius rationibus una cum schediasmate in quo Apollonio Pergaeo promotae doctrinae curvarum gloria vindicatur'', Vitembergae (Gerdes) 1715</ref> de phosphoro meo Mercuriali<ref>Bernoulli, Johann I Op. LXIII, ''Nouveau Phosphore, Par M. Bernoulli, Professeur à Groningue, Extrait d'une de ses Lettres écrite de Groningue le 6. Novembre 1700'': Mém. Paris 1701 (1704), pp. 1-9</ref> etiam mihi transmisit. Volebat ut videtur aliquid novi producendo nomen sibi comparare, in hunc finem sibi dissentiendum esse existimavit a mea explicatione, qua tamen, quod citra jactantiam dixerim, vix meliorem expectandam fore censeo, eo quod accurate adeo omnibus phaenomenis satisfacit: sed in Tua sum opinione Vir Cel. quod commenta puerilia nobis obtrudat Weidlerus loco judiciosae explicationis, quam ab eo expectabam, cum primum inspicerem titulum ejus dissertationis. Quid enim magis ridiculum quam dicere, lucem phosphori mercurialis esse lucem a sole derivandam et in tenebricosis locis superstitem, miror quod non dixerit radios solares a mercurio imbibi eumque ita lucidum reddi eum in modum quo idem contingit lapidi bononiensi<ref>[Text folgt]</ref>; sed tunc arduum ipsi fuisset explicare, cur Mercurius ab aëris contactu liberatus esse debeat, cur luceat jam diu absente sole, cur luceat etsi solis radiis sub Dio non fuerit expositus, cur lumen in Mercurio non pedetentim<ref>Im Manuskript steht "pedetentiam"</ref> evanescat, haec [[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/ | De Lexico Tuo Mathematico<ref>Wolff, Christian, ''Mathematisches Lexicon'', Leipzig 1716</ref> multum quoque mihi promitto siquidem eadem, qua Elementa reliquaque Tua scripta dexteritate elaboratum prodibit de quo nullus dubito. Exemplar ejus, quod promittis, ubi typis descriptum fuerit augebit novo additamento<ref>Im Manuskript steht irrtümlich "addidamentum"</ref> debitorum meorum summam. Weidlerus suam dissertationem<ref>Weidler, Johann Friedrich, ''Exercitatio de phosphoro mercuriali praecipue eo qui in barometris lucet et eius rationibus una cum schediasmate in quo Apollonio Pergaeo promotae doctrinae curvarum gloria vindicatur'', Vitembergae (Gerdes) 1715</ref> de phosphoro meo Mercuriali<ref>Bernoulli, Johann I Op. LXIII, ''Nouveau Phosphore, Par M. Bernoulli, Professeur à Groningue, Extrait d'une de ses Lettres écrite de Groningue le 6. Novembre 1700'': Mém. Paris 1701 (1704), pp. 1-9</ref> etiam mihi transmisit. Volebat ut videtur aliquid novi producendo nomen sibi comparare, in hunc finem sibi dissentiendum esse existimavit a mea explicatione, qua tamen, quod citra jactantiam dixerim, vix meliorem expectandam fore censeo, eo quod accurate adeo omnibus phaenomenis satisfacit: sed in Tua sum opinione Vir Cel. quod commenta puerilia nobis obtrudat Weidlerus loco judiciosae explicationis, quam ab eo expectabam, cum primum inspicerem titulum ejus dissertationis. Quid enim magis ridiculum quam dicere, lucem phosphori mercurialis esse lucem a sole derivandam et in tenebricosis locis superstitem, miror quod non dixerit radios solares a mercurio imbibi eumque ita lucidum reddi eum in modum quo idem contingit lapidi bononiensi<ref>[Text folgt]</ref>; sed tunc arduum ipsi fuisset explicare, cur Mercurius ab aëris contactu liberatus esse debeat, cur luceat jam diu absente sole, cur luceat etsi solis radiis sub Dio non fuerit expositus, cur lumen in Mercurio non pedetentim<ref>Im Manuskript steht "pedetentiam"</ref> evanescat, haec [[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_003r.jpg]] enim et alia multa secus observantur in Lapide Bononiensi calcinato. Est mihi adhuc exemplar phosphori mei mercurialis in phiala vitrea aëre evacuata inclusi, qui unus ex primis est quos jam ante 20 annos paravi, hic tamen quem perpetuo in arca quadam clausa asservo, ad quem adeo nihil lucis solaris pertingere potest, noctu tamen depromtus et agitatus tam vividam lucem fundit quam prima vice fecit ut tota lagenula igne plena appareat, quid hic contribuant radii solares in tenebris superstites et a superficie Mercurii tanquam a speculo caustico collecti, ut lepide sommiat Weidlerus, ego certe quae mea est mentis hebetudo assequi non possum praesertim cum quaelibet gutta Mercurii inter agitandum separata a reliquo sit lucida, etsi utique non habeat superficiem concavam, quae sit loco speculi concavi ad radios colligendos apti, qualem Weidlerus primario requirit, ad ostendendum quomodo lux in barometris generetur, asserens scilicet mercurium in tubo barometri agitando descendentem in summitate ex cavari in superficiem concavam quae more speculorum vitreorum<ref>Im Manuskript steht mit einer Korrektur "viteriorum"</ref> radios a sole remanentes et per tenebras dispersos congregare et ita visibiles reddere possit: risum teneatis amici! | ||
Cookii Meteorologiam<ref>Cock, William, ''Meteorologia Oder Der rechte Weg Vorher zu wissen / Zu beurtheilen Die Veränderung der Lufft Und Abwechselung des Wetters In verschiedenen Landern: Darinnen auch entdecket worden die Ursachen warum die gemeine Calender-Schreiber so sehr fehlen; und die rechte Weise das Wetter zu erkennen klar und deutlich erwiesen wird / durch William Cock Philomathem''. ... Aus der Engl. Sprach ins Teuthsche übersetzet. Hamburg: Liebezeit, 1691</ref> non vidi, sed vereor ne pro regulis praedicendi tempestates ex syderum positu vel aspectu meras nugas venditet: quando autem existimat regulas suas per 20 annos ad amussim eventui respondisse, forsan ambiguitate regularum, qua fit ut hujusmodi regulas ad omnes eventus [[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/ | Cookii Meteorologiam<ref>Cock, William, ''Meteorologia Oder Der rechte Weg Vorher zu wissen / Zu beurtheilen Die Veränderung der Lufft Und Abwechselung des Wetters In verschiedenen Landern: Darinnen auch entdecket worden die Ursachen warum die gemeine Calender-Schreiber so sehr fehlen; und die rechte Weise das Wetter zu erkennen klar und deutlich erwiesen wird / durch William Cock Philomathem''. ... Aus der Engl. Sprach ins Teuthsche übersetzet. Hamburg: Liebezeit, 1691</ref> non vidi, sed vereor ne pro regulis praedicendi tempestates ex syderum positu vel aspectu meras nugas venditet: quando autem existimat regulas suas per 20 annos ad amussim eventui respondisse, forsan ambiguitate regularum, qua fit ut hujusmodi regulas ad omnes eventus [[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_003v.jpg]] trahere liceat, delusus ipse et alios quoque deludere voluit. | ||
Hermanni nostri Phoronomiam<ref>Hermann, Jacob (Na. 022), ''Phoronomia: sive de viribus et motibus corporum solidorum et fluidorum libri duo, autore Jacobo Hermanno Basil.'', Amstelaedami 1716 </ref> etiam ego dono accepi: potuisset ut mihi quidem videtur materiam suam plerumque clarius et brevius pertractare quam fecit, si analysi nostra ordinaria infinite parvorum semper uti voluisset, sed apparet illum studio ab ea discedere voluisse ut posset Newtonum imitari synthetice procedentem in suis Princip. Phil. nat. Math.<ref>[Text folgt]</ref> quo factum ut quemadmodum ipse Newtonus saepiss[im]e<ref>Im Manuskript steht mit einer Korrektur "saepisse"</ref> perobscuras, longas et intricatissimas demonstrationes pertexuerit, r[e]rum alias non adeo difficilium, si viam analyticam sequi voluisset, quo fine per salebras ire maluerit quam per viam planam, ego non capio, putat Ampl. Leibnitius Hermannum studuisse Anglis complacere, quod complacendi studium ipse non approbat, in suis ad me litteris dicit se nuper ex Anglia intellexisse, quod Keilius invito hoc Hermani genere scribendi jam stricturas parat in opus ipsius, quantumvis bona et elegantia multa illud contineat. | Hermanni nostri Phoronomiam<ref>Hermann, Jacob (Na. 022), ''Phoronomia: sive de viribus et motibus corporum solidorum et fluidorum libri duo, autore Jacobo Hermanno Basil.'', Amstelaedami 1716 </ref> etiam ego dono accepi: potuisset ut mihi quidem videtur materiam suam plerumque clarius et brevius pertractare quam fecit, si analysi nostra ordinaria infinite parvorum semper uti voluisset, sed apparet illum studio ab ea discedere voluisse ut posset Newtonum imitari synthetice procedentem in suis Princip. Phil. nat. Math.<ref>[Text folgt]</ref> quo factum ut quemadmodum ipse Newtonus saepiss[im]e<ref>Im Manuskript steht mit einer Korrektur "saepisse"</ref> perobscuras, longas et intricatissimas demonstrationes pertexuerit, r[e]rum alias non adeo difficilium, si viam analyticam sequi voluisset, quo fine per salebras ire maluerit quam per viam planam, ego non capio, putat Ampl. Leibnitius Hermannum studuisse Anglis complacere, quod complacendi studium ipse non approbat, in suis ad me litteris dicit se nuper ex Anglia intellexisse, quod Keilius invito hoc Hermani genere scribendi jam stricturas parat in opus ipsius, quantumvis bona et elegantia multa illud contineat. | ||
Doctor ille Medicinae Anglus quem Tibi Vir Celeberrime commendare sustinui, laudavit mihi, quam potuit maxime mirificam urbanitatem, qua a Te fuerit exceptus, quo circa et hoc nomine me Tibi obstrictum sentio.<ref>Es handelt sich um John Arnold aus Exeter (geb. ca. 1688), mit dem Johann I Bernoulli seit dessen Abreise aus Basel von 1713 bis 1719 im Briefwechsel stand. Die Briefe Arnolds an Johann I Bernoulli sind nicht erhalten.</ref> Quando ille <ref>Anmerkung mit Bleistift am unteren Rand des Blattes von der Hand Johann III Bernoullis: "hic incipit Epistola pro emin. Mathem." Der folgende Text des Briefes wurde dann auf Wunsch Johann I Bernoullis von Christian Wolff anonym und in redaktionell bearbeiteter Form unter dem Titel ''Epistola pro eminente Mathematico, Dn. Johanne Bernoullio, contra quendam ex Anglia antogonistam'' [sic] ''scripta'' in den AE Julii 1716, pp. 296-315 abgedruckt.</ref> asseveravit, quod inventio calculi integralis mihi sit tribuenda, fortassis nihil a veritate adeo alienum dixit, si praesertim hunc calculum a calculo differentiali, quem utique totum Leibnitio deberi etiam apud me extra controversiam est, distinguere velimus. Quod si Tu contendas calculum integralem esse tantum partem calculi differentialis, hoc quidem libenter largiar ne in logomachiam abeamus: nihil interim impedit quo minus hujus partis (quam etiam ego primus nomine inte[[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/ | Doctor ille Medicinae Anglus quem Tibi Vir Celeberrime commendare sustinui, laudavit mihi, quam potuit maxime mirificam urbanitatem, qua a Te fuerit exceptus, quo circa et hoc nomine me Tibi obstrictum sentio.<ref>Es handelt sich um John Arnold aus Exeter (geb. ca. 1688), mit dem Johann I Bernoulli seit dessen Abreise aus Basel von 1713 bis 1719 im Briefwechsel stand. Die Briefe Arnolds an Johann I Bernoulli sind nicht erhalten.</ref> Quando ille <ref>Anmerkung mit Bleistift am unteren Rand des Blattes von der Hand Johann III Bernoullis: "hic incipit Epistola pro emin. Mathem." Der folgende Text des Briefes wurde dann auf Wunsch Johann I Bernoullis von Christian Wolff anonym und in redaktionell bearbeiteter Form unter dem Titel ''Epistola pro eminente Mathematico, Dn. Johanne Bernoullio, contra quendam ex Anglia antogonistam'' [sic] ''scripta'' in den AE Julii 1716, pp. 296-315 abgedruckt.</ref> asseveravit, quod inventio calculi integralis mihi sit tribuenda, fortassis nihil a veritate adeo alienum dixit, si praesertim hunc calculum a calculo differentiali, quem utique totum Leibnitio deberi etiam apud me extra controversiam est, distinguere velimus. Quod si Tu contendas calculum integralem esse tantum partem calculi differentialis, hoc quidem libenter largiar ne in logomachiam abeamus: nihil interim impedit quo minus hujus partis (quam etiam ego primus nomine inte[[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_004r.jpg]]gralis baptizavi) inventionem mihi arrogare liceat, quod Te non invito dixerim, modo attendere digneris ad gestorum seriem; reperies enim Ampl. Leibnitium, cui similem calculum quem summatorium vocat innotuisse non nego, nihil omnino ante me Fratremque meum in lucem edidisse unde colligi potuisset, quomodo regulae essent condendae pro integrandis quantitatibus differentialibus; adeo ut meo Marte eruendae mihi fuerint regulae (quarum non nullas in Tomo I Tui Operis exponis) ex quibus algorithmum concinnavi. Eas autem regulas a me excogitatas primo Fratri aperui, qui quod earum soliditatem non statim perciperet, initio aegre eas admittebat, veritus ne illarum usus in paralogismos deduceret, mox vero demonstrationum mearum vim sentiens adoptavit calculum hunc meum integralem et excoluit ipse: retentoque ipso nomine "integralis", quod ei indideram aliud commodius tunc nesciens publice usus est Frater et quidem prima vice (nihil enim antea hujus nominis usurpatum in ullo libro invenies) in Actis Lips. an. 1690, p. 218, lin. penult.<ref>Jacob I Bernoulli, ''J. B. Analysis problematis antehac propositi, de inventione lineae descensus a corpore gravi percurrendae unisormiter, sic ut emporibus aequalibus aequales altitudines emetiatur: & alterius cujusdam Problematis Propositio'': AE Maji 1690, pp. 217-223</ref> ubi ostendit, integrale quantitatis compositae irrationalis <math>dy\sqrt{bby-a^{3}}</math> qualis per calculum hunc nunquam antea fuit integrata. Leibnitius hujus modi integrationem nusquam dederat, saltem non publice. Dedit quidem in Actis Lips. an. 1686, pag. 297 exemplum integrationis,<ref>Leibniz, Gottfried Wilhelm, ''De Geometria recondita et Analysi Indivisibilium atque infinitorum'' ...: AE Junii 1686, pp. 292-300</ref> nempe ipsius <math>xdx</math> sed quod ut ipse notat immediate adeo ex directo calculo differentiali fluit, ut nulla arte nedum analysi ad id opus fuerit. Dicitque porro quod <math>\int dx:\sqrt{2x-xx}</math> seu ut ego voco integrale ipsius <math>\frac{dx}{\sqrt{2x-xx}}</math> exhibeat arcum circuli, quod quidem ex nuda arcus differentiatione patet: sed hoc pariter pro methodo integrandi nihil confert. | ||
[[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/ | [[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_004v.jpg]] Constat proin calculum integralem et rem et nomen a me habuisse siquidem in justas regulas eum redactum et ad algorithmum quendam revocatum primus tractare docui in forma analyseos:<ref>Johann I Bernoulli hat seine Privatlektionen zur Integralrechnung erst in seinen Opera von 1742 publiziert. Bernoulli, Johann I Op. CXLIX, ''Lectiones Mathematicae, de Methodo Integralium, aliisque, conscriptae in usum Ill. Marchionis Hospitalii, Cum Auctor Parisiis ageret Annis 1691 & 1692'': Opera III, pp. 385-558</ref> specimen insigne ejus rei dedi per solutionem problematis catenarii, quod primo Fratri meo privatim proposueram; hic vero cum illud solvere non posset publice proposuit, ut liquet ex Actis Lips. 1691<ref>Bernoulli, Johann I Op. IV, ''Solutio Problematis Funicularii'': AE Junii 1691, pp. 274-276.</ref> ubi plura alia exempla per calculum integralem a nobis soluta conspiciuntur. | ||
Quid mihi et quousque debeatur calculus integralis inventus et nunc passim usitatus, nec non et ipsius calculi differentialis promotio et propagatio loquuntur porro ea quae durante mea peregrinatione cum Eruditis in scripto communicavi; praesertim in Gallia, ubi prae caeteris Hospitalio liberalissime omnia nostra mysteria praesens ore et calamo, postea vero absens per litteras aperui et explicavi. Ex lectionibus meis<ref>Bernoulli, Johann I Op. CXLIX, ''Lectiones Mathematicae, de Methodo Integralium, aliisque, conscriptae in usum Ill. Marchionis Hospitalii, Cum Auctor Parisiis ageret Annis 1691 & 1692'': Opera III, pp. 385-558</ref> in usum ipsius conscriptis cum Parisiis commorarer ipsique traditis librum postea suum contexuit Gallicum de ''Analysi infinite parvorum''<ref>L'Hôpital, Guillaume-François Antoine de, Marquis de Sainte-Mesme, ''Analyse des infiniment petits, Pour l'intelligence des lignes courbes'', Paris 1696</ref> complectentem quidem tantum primam partem seu calculum differentialem: alteram vero seu calculum integralem postea traditurus erat nisi morte occupatus fuisset; habebat enim ex manuscriptis meis materiam ejus paratissimam. | Quid mihi et quousque debeatur calculus integralis inventus et nunc passim usitatus, nec non et ipsius calculi differentialis promotio et propagatio loquuntur porro ea quae durante mea peregrinatione cum Eruditis in scripto communicavi; praesertim in Gallia, ubi prae caeteris Hospitalio liberalissime omnia nostra mysteria praesens ore et calamo, postea vero absens per litteras aperui et explicavi. Ex lectionibus meis<ref>Bernoulli, Johann I Op. CXLIX, ''Lectiones Mathematicae, de Methodo Integralium, aliisque, conscriptae in usum Ill. Marchionis Hospitalii, Cum Auctor Parisiis ageret Annis 1691 & 1692'': Opera III, pp. 385-558</ref> in usum ipsius conscriptis cum Parisiis commorarer ipsique traditis librum postea suum contexuit Gallicum de ''Analysi infinite parvorum''<ref>L'Hôpital, Guillaume-François Antoine de, Marquis de Sainte-Mesme, ''Analyse des infiniment petits, Pour l'intelligence des lignes courbes'', Paris 1696</ref> complectentem quidem tantum primam partem seu calculum differentialem: alteram vero seu calculum integralem postea traditurus erat nisi morte occupatus fuisset; habebat enim ex manuscriptis meis materiam ejus paratissimam. | ||
Zeile 84: | Zeile 84: | ||
Quod quidem non ignorant plures Mathematici, qui eorandem manuscriptorum meorum apographa sibi compararunt, inter quos et ipse noster Hermannus sicut et quidam alii Germani nonnullique Itali et Angli,<ref>Gemeint sind wohl Giuseppe Verzaglia, William Burnet, John Arnold und andere.</ref> qui sub mea manuductione studia Mathematica prosequentes facultatem a me impetrarunt describendi primum illud apographum quod ipsemet prudenti consilio descripseram ab originali antequam nempe Hospitalio exhiberem, id quod feci ne me proprio meo foetu privarem. | Quod quidem non ignorant plures Mathematici, qui eorandem manuscriptorum meorum apographa sibi compararunt, inter quos et ipse noster Hermannus sicut et quidam alii Germani nonnullique Itali et Angli,<ref>Gemeint sind wohl Giuseppe Verzaglia, William Burnet, John Arnold und andere.</ref> qui sub mea manuductione studia Mathematica prosequentes facultatem a me impetrarunt describendi primum illud apographum quod ipsemet prudenti consilio descripseram ab originali antequam nempe Hospitalio exhiberem, id quod feci ne me proprio meo foetu privarem. | ||
[[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/ | [[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_005r.jpg]] Quin et Illustr. Leibnitius, qui quae narravi non ignorat dictorum veritati testimonium perhibere posset, et partim jam perhibuit, quippe qui non tantum in Litteris suis privatis tam ad me ipsum quam ad alios scriptis, sed et publice profitetur; calculum hunc "jam nobis ipsis non minus quam sibi deberi". Vid. act. Lips. 1697, p. 202.<ref>Leibniz, Gottfried Wilhelm in AE Maji 1697, p. 202: "Hic autem successus tam insignis Dominos Bernoullios fratres mirifice animavit, ad praeclara porro ope hujus calculi praestanda, efficiendumque, ut jam non ipsorum minus quam meu esse videtur." Bereits in seinem Brief von 1694 03 21 an Johann I Bernoulli hatte Leibniz hinsichtlich seiner neue Methode der Differentialrechnung geschrieben: "vestra enim non minus haec methodus, quam mea est." (Leibniz, ''Math. Schriften'' 1, p. 136). Leibniz wollte die Beiträge der Bernoulli in seinem geplanten Opus "Scientia infiniti" gebührend erwähnen. Dazu schreibt er 1694 06 07 an Johann I Bernoulli. "Quae cum ita sint, quod molior ego Opus, non magis meum quam vestrum erit." (Leibniz, ''Math. Schriften'' 1, p. 143).</ref> Haec vero, quaeso Vir Celeb. ne eo animo dicta putes, quasi de meritissimis laudibus Leibnitii quicquam detractum velim, aut viro summo palmam dubiam reddere contendam, ut enim jam supra monui non aegre adducor ut credam Virum hunc habuisse suum calculum summatorium in eadem perfectione, eodem tempore et forte citius quam mihi inventus esset calculus integralis, quid enim hujus Viri sagacitas penetrare non posset? Nihil itaque aliud evincere volui, quam quod ex propria mea industria calculum integralem seu differentialem inversum excogitaverim, ansam quidem praebente calculo directo, et quod ante me Fratremque meum nemo quicquam in lucem ediderit pro integrandis quantitatibus compositis et irrationalibus, quando interim Nos varia ejus specimina primi exhibuimus: ut ita non videam cur inter inventores non aeque poni merear, quam qui diu ante Nos quoque possedisset nihil tamen evulgasset. Quod interim ad calculum differentialem proprie sic dictum attinet, ejus quidem inventionem in solidum semper attribui Leibnitio et, quicquid dixerint Angli, etiamnum attribuo. Quare ne modestiae limites transgrederemur, nihil gloriae hactenus proponimus, nullamque inde lauream nobis arrogavimus; tametsi non tam paucis istis pagellis, in quibus calculum differentialem tanquam per aenigmatis nebulam conspiciendum proposuit Leibnitius, in Act. Lips. 1684<ref>Leibniz, Gottfried Wilhelm, ''Nova methodus'': AE Octobris 1684, pp. 466-473</ref> calculus iste celebritatem acquisiverit, imo non tam ab Eruditis intelligi coeperit ex illo schediasmate nedum inclarescere, quam ex nostris [[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_005v.jpg]] frequentibus aenigmatis illius explicationibus et commentationibus atque ex variis in eam rem et copiosis exhibitis speciminibus itemque ex meis apud Exteros Geometras in itinere habitis conversationibus, sine quibus omnibus nescio annon calculus iste in pagellis illis sepultus etiam num delitescet inglorius. Cum enim per 4 fere annos inibi latuisset a nemine perceptus antequam eum in lucem protraheremus, potuisset haud dubie diutius conquiescere sine strepitu et forsitan tunc nunquam Anglorum aemulatio proritata fuisset. | ||
Ex quibus ergo porro liquet quid tenendum sit de lite illa inter Anglos Germanosque nostros exorta et quae jam ab aliquot annis viget, utrum scilicet Newtonus<ref>Im Manuskript steht Newtonum</ref> an Leibnitius pro primo Inventore hujus calculi sit habendus. Quaestio haud absimilis videtur ei, qua quaereretur, utrum hic vel ille primum lapidem jecerit praeclari alicujus aedificii, quinam vero fuerint illi, qui aedificium ipsum ad fastigium suum vel saltem aliquousque evexerint, nemo esset qui quaereret. Quasi nempe illi qui rem quandam ab incunabulis inceptam longe promovent nihil laudis, illi alii autem qui prima ejus stamina posuere soli omnem honoris mercedem meruissent. Ut jam nihil dicam, quod rixantes nihil pensi habeant, cui sint attribuenda tot alia inventa quae sane nuda methodo sive differentialium sive fluxionum nullo modo nituntur. Ex innumeris quae silentio praetereo, sit calculus exponentialis, per quem quantitates ad dimensiones indeterminatas differentiare, curvasque ejusdem nominis tractare primus ego docui,<ref>Cf. Bernoulli, Johann I Op. XXXVI, ''Principia Calculi exponentialium seu percurrentium'': AE Martii 1697, pp. 125-133.</ref> quod Tu ipsemet Vir Cl. in Litteris Tuis pro ea qua es aequitate agnoscere videris. | Ex quibus ergo porro liquet quid tenendum sit de lite illa inter Anglos Germanosque nostros exorta et quae jam ab aliquot annis viget, utrum scilicet Newtonus<ref>Im Manuskript steht Newtonum</ref> an Leibnitius pro primo Inventore hujus calculi sit habendus. Quaestio haud absimilis videtur ei, qua quaereretur, utrum hic vel ille primum lapidem jecerit praeclari alicujus aedificii, quinam vero fuerint illi, qui aedificium ipsum ad fastigium suum vel saltem aliquousque evexerint, nemo esset qui quaereret. Quasi nempe illi qui rem quandam ab incunabulis inceptam longe promovent nihil laudis, illi alii autem qui prima ejus stamina posuere soli omnem honoris mercedem meruissent. Ut jam nihil dicam, quod rixantes nihil pensi habeant, cui sint attribuenda tot alia inventa quae sane nuda methodo sive differentialium sive fluxionum nullo modo nituntur. Ex innumeris quae silentio praetereo, sit calculus exponentialis, per quem quantitates ad dimensiones indeterminatas differentiare, curvasque ejusdem nominis tractare primus ego docui,<ref>Cf. Bernoulli, Johann I Op. XXXVI, ''Principia Calculi exponentialium seu percurrentium'': AE Martii 1697, pp. 125-133.</ref> quod Tu ipsemet Vir Cl. in Litteris Tuis pro ea qua es aequitate agnoscere videris. | ||
[[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/ | [[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_006r.jpg]] Plura dicturus eram quia ut mihi videtur non satis cognitam habes historiam Calculi infinitesimalis inde ab infantia ad virilem suam aetatem provecti, poteram praesertim producere atque monstrare Tibi Vir Cl. excerpta quarundam epistolarum jam olim me inter et Geometras quosdam commutatarum quae dictis his fidem conciliassent. Sed ne in molem nimiam excrescant hae litterae, confisusque causae meae apud Te Judicem aequissimum fidem habiturae, reliquum quod superest spatium temporis cujus angustia in praesentiarum ob negotiorum multitudinem vehementer premor impendam amoliendis a me frivolis accusationibus et impactionibus quibus me oneravit Keilius Vir ut nosti qui se pro Newtono crucifigi pateretur; et cui indifferens est omnia quae ab Idolo suo proveniunt tam mala quam bona acerrime propugnare. | ||
Iste igitur Keilius in responsione sua (quam potius invectivam dixeris contra Leibnitium) inserta diario Gallico Litterario Hagiensi mens. Jul. et Augusti pag. 320,<ref>Keill, John, ''Réponse de M. Keill, M.D. Professeur d'Astronomie Savilien, aux Auteurs des Remarques sur le Differérent entre M. de Leibnitz & M. Newton, publiées dans le Journal Literaire de la Haye de Novembre & Decembre 1713'': Journal Literaire de la Haye, Tom. IV., 2 Juli und August 1714, pp. 319-358</ref> qui menses non nisi nuper demum ad me pervenere; Keilius, inquam, arrepta occasione praeter omnem necessitatem me quoque perstringit variaque mihi imputat, ad quae me reponere oportet sequentia nihil interim dicturum de lite ipsa quam acerbissimis verbis movere pergit Illustr. Leibnitio, qui sine dubio causam suam ipse defendet in apologia sua quam una cum commercio Epistolico<ref>Leibnizens Commercium epistolicum ist als solches zu seinen Lebzeiten nicht erschienen. Erst 29 Jahre nach seinem Tod erschien [Castillon, Hrsg.]: ''Virorum celeberr. Got. Gul. Leibnitii et Johan. Bernoullii Commercium philosophicum et mathematicum''. Tomus primus, Ab Anno 1694 ad Annum 1699 und Tomus secundus, Ab Anno 1700 ad Annum 1716, Lausannae & Genevae 1745. </ref> alteri illi Anglico opponendo nobis promittit. In scripto illo volante quod sub forma Epistolae,<ref>[Leibniz, Gottfried Wilhelm,] ''Epistola qua probatur Analyticam Artem primum a L... fuisse editam et post complures demum annos a N... Calculum Fluxionum fuisse productum''. Bei dieser Flugschrift (8°, 4 pp.) handelt es sich um einen Auszug aus einem Brief Leibnizens von 1713 07 29, abgedruckt in: ''Deutsche Acta Eruditorum,'' 1713, pp. 950-954 (Ravier 72).</ref> Tua ni fallor opera, typis mandatum in lucem prodiit 29. Julij 1713 asseritur [[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/ | Iste igitur Keilius in responsione sua (quam potius invectivam dixeris contra Leibnitium) inserta diario Gallico Litterario Hagiensi mens. Jul. et Augusti pag. 320,<ref>Keill, John, ''Réponse de M. Keill, M.D. Professeur d'Astronomie Savilien, aux Auteurs des Remarques sur le Differérent entre M. de Leibnitz & M. Newton, publiées dans le Journal Literaire de la Haye de Novembre & Decembre 1713'': Journal Literaire de la Haye, Tom. IV., 2 Juli und August 1714, pp. 319-358</ref> qui menses non nisi nuper demum ad me pervenere; Keilius, inquam, arrepta occasione praeter omnem necessitatem me quoque perstringit variaque mihi imputat, ad quae me reponere oportet sequentia nihil interim dicturum de lite ipsa quam acerbissimis verbis movere pergit Illustr. Leibnitio, qui sine dubio causam suam ipse defendet in apologia sua quam una cum commercio Epistolico<ref>Leibnizens Commercium epistolicum ist als solches zu seinen Lebzeiten nicht erschienen. Erst 29 Jahre nach seinem Tod erschien [Castillon, Hrsg.]: ''Virorum celeberr. Got. Gul. Leibnitii et Johan. Bernoullii Commercium philosophicum et mathematicum''. Tomus primus, Ab Anno 1694 ad Annum 1699 und Tomus secundus, Ab Anno 1700 ad Annum 1716, Lausannae & Genevae 1745. </ref> alteri illi Anglico opponendo nobis promittit. In scripto illo volante quod sub forma Epistolae,<ref>[Leibniz, Gottfried Wilhelm,] ''Epistola qua probatur Analyticam Artem primum a L... fuisse editam et post complures demum annos a N... Calculum Fluxionum fuisse productum''. Bei dieser Flugschrift (8°, 4 pp.) handelt es sich um einen Auszug aus einem Brief Leibnizens von 1713 07 29, abgedruckt in: ''Deutsche Acta Eruditorum,'' 1713, pp. 950-954 (Ravier 72).</ref> Tua ni fallor opera, typis mandatum in lucem prodiit 29. Julij 1713 asseritur [[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_006v.jpg]] pag. 3 Newtonus rationem veram capiendi fluxiones fluxionum vel rectam methodum differentiandi differentialia nondum cognitam habuisse cum scriberet sua Princip. Phil. Math.<ref>Newton, Isaac, ''Philosophiae Naturalis Principia Mathematica'', Londini 1687</ref> additurque per parenthesin hoc "ab eminente quodam Mathematico dudum notatum esse"; jam vero Keilius conjectat quod per hunc Mathematicum ego sim intelligendus idque ex eo quod in Act. Lips. 1713, m. febr. pag. 93 et 94<ref>[Text folgt]</ref> Newtono imputaverim dedisse modum vitiosum differentiandi differentialia per seriem quandam cujus termini tertius, quartus, quintus etc. ab ipso sumti sint perperam pro differentiali secundo, tertio, quarto etc. Hinc ergo Keilius ansam capit suum in me stringendi calamum, quo vero jure et quo successu nunc patebit. | ||
Observabam olim errorem quem Newtonus commisit in Princip. Phil. Math. edit. prim. p. 265,<ref>[Text folgt]</ref> et quibusdam aliis in locis ubi nempe aggressus est determinare rationem gravitatis ad resistentiam in corporibus datam lineam describentibus, quam proportionem a Newtono traditam cum deprehendissem erroneam et a mea diversam, ejus mentionem feci in meo schediasmate quod de hac materia aliisque huc spectantibus publicabam in Act. Lips. 1713, mens. febr. et mart.<ref>Bernoulli, Johann I Op. XC, ''De motu corporum gravium'': AE Februarii 1713, pp. 77-95; AE Martii 1713 pp. 115-132</ref>, nec aliter poteram quam monere Lectorem meum lapsus Newtoniani, ne si ipse animadversurus fuisset discrepantiam inter Newtoni regulam et meam, ille Viri summi Auctoritate motus, vitium in mea regula latere, praecipitanter judicaret; interim monui de errore omni qua potui civilitate et velut in transitu, adeo ut mirer Keilium dicere ausum quod "hoc schediasma in actis publicaverim eum tantum in finem ut hunc errorem Newtoni propalarem et toti mundo patefacerem" vid. Diarium litterarium Hag. m. Jul. et August. pag. 345<ref>Keill, John, ''Réponse de M. Keill, M.D. Professeur d'Astronomie Savilien, aux Auteurs des Remarques sur le Differérent entre M. de Leibnitz & M. Newton, publiées dans le Journal Literaire de la Haye de Novembre & Decembre 1713'': Journal Literaire de la Haye, Tom. IV, 2, Juli und August 1714, pp. 319-358</ref>, quasi nempe nihil aliud in eo egissem quam errores alterius sectari, quod quam falsum sit judicent illi, qui me noverunt ab hoc more criticum agendi alienissimum, et [[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/ | Observabam olim errorem quem Newtonus commisit in Princip. Phil. Math. edit. prim. p. 265,<ref>[Text folgt]</ref> et quibusdam aliis in locis ubi nempe aggressus est determinare rationem gravitatis ad resistentiam in corporibus datam lineam describentibus, quam proportionem a Newtono traditam cum deprehendissem erroneam et a mea diversam, ejus mentionem feci in meo schediasmate quod de hac materia aliisque huc spectantibus publicabam in Act. Lips. 1713, mens. febr. et mart.<ref>Bernoulli, Johann I Op. XC, ''De motu corporum gravium'': AE Februarii 1713, pp. 77-95; AE Martii 1713 pp. 115-132</ref>, nec aliter poteram quam monere Lectorem meum lapsus Newtoniani, ne si ipse animadversurus fuisset discrepantiam inter Newtoni regulam et meam, ille Viri summi Auctoritate motus, vitium in mea regula latere, praecipitanter judicaret; interim monui de errore omni qua potui civilitate et velut in transitu, adeo ut mirer Keilium dicere ausum quod "hoc schediasma in actis publicaverim eum tantum in finem ut hunc errorem Newtoni propalarem et toti mundo patefacerem" vid. Diarium litterarium Hag. m. Jul. et August. pag. 345<ref>Keill, John, ''Réponse de M. Keill, M.D. Professeur d'Astronomie Savilien, aux Auteurs des Remarques sur le Differérent entre M. de Leibnitz & M. Newton, publiées dans le Journal Literaire de la Haye de Novembre & Decembre 1713'': Journal Literaire de la Haye, Tom. IV, 2, Juli und August 1714, pp. 319-358</ref>, quasi nempe nihil aliud in eo egissem quam errores alterius sectari, quod quam falsum sit judicent illi, qui me noverunt ab hoc more criticum agendi alienissimum, et [[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_007r.jpg]] qui in illo meo specimine multa nova invenerunt et laudarunt. Sufficiebat equidem errorem Newtoni animadvertisse ex eo solo quod ipsius regula abluderet a mea quam certissimam esse demonstrative sciebam, ipseque Newtonus postea agnovit: poteram itaque nuda erroris detectione acquiescere eumque in Actis simpliciter commemorare sed Agnatus meus, cui Newtoni lapsum indicaveram curiosus ex quo fonte originem traxisset, examinavit totam solutionem, Propos. X, quae in prima editione pag. 260 Princip. Phil.<ref>[Text folgt]</ref> extat, retulitque paulo post, sibi videri fontem erroris consistere in non recto usu seriei quam Newtonus ibidem pag. 263 adhibet pro sumendis differentiis ulteriorum graduum,<ref>Bernoulli, Nicolaus I, ''Addition de M. (Nicolas) Bernoulli, Neveu de l'Auteur de ce Memoire-cy'': Mém. Paris 1711 (1714), pp. 53-56</ref> cujus nempe seriei, quae per evolutionem vel extractionem radicis applicatam curvae exprimentis emergit, terminus tertius ex mente Newtoni exhibeat differentiam applicatae secundam terminus quartus differentiam ejusdem tertiam et ita deinceps; deceptus namque videbatur Newtonus successu duorum primorum terminorum, dum forte putavit quemadmodum primus seriei terminus exponit applicatam ipsam seu ejus differentiam nullanam et secundus seriei terminus dat applicatae differentiam primam, falsa jam inductione conclusit ita tertium seriei terminum dare differentiam secundam, quartum terminum differentiam tertiam et ita porro. | ||
Haec cum vidissem probabilitate minime carere, nullam habebam rationem dubitandi, quin in hoc ipso cespitaverit Newtonus, in qua opinione eo magis confirmabar videns postea, Newtonum alio in loco aperte eandem hanc sententiam falsam fovisse de sumendis terminis seriei pro differentiis differentiarum. Inspice modo si lubet ejus tractatum de quadratura curvarum,<ref>Newton, Isaac, ''Tractatus de quadratura curvarum'': Opuscula Newtonii Nr. I, pp. 201-244, 1704 (kontrollieren)</ref> invenies ab initio scholii quod in Fine subnectitur<ref>p. 39</ref> haec verba "Quanti[[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/ | Haec cum vidissem probabilitate minime carere, nullam habebam rationem dubitandi, quin in hoc ipso cespitaverit Newtonus, in qua opinione eo magis confirmabar videns postea, Newtonum alio in loco aperte eandem hanc sententiam falsam fovisse de sumendis terminis seriei pro differentiis differentiarum. Inspice modo si lubet ejus tractatum de quadratura curvarum,<ref>Newton, Isaac, ''Tractatus de quadratura curvarum'': Opuscula Newtonii Nr. I, pp. 201-244, 1704 (kontrollieren)</ref> invenies ab initio scholii quod in Fine subnectitur<ref>p. 39</ref> haec verba "Quanti[[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_007v.jpg]]tatum fluentium, inquit, Fluxiones esse primas, secundas, tertias, quartas, aliasque diximus supra. Hae fluxiones sunt ut termini serierum infinitarum convergentium. Ut si <math>z^{n}</math> sit quantitas fluens et fluendo evadat <math>(z+o)^{n}</math>, deinde resolvatur in seriem convergentem <math>z^{n}+noz^{n-1}+\frac{nn-n}{2}ooz^{n-2}+\frac{n^{3}-3nn+2n}{6}o^{3}z^{n-3}+</math> etc. terminus primus hujus seriei <math>z^{n}</math> erit quantitas illa fluens, secundus <math>noz^{n-1}</math> erit ejus incrementum primum seu differentia prima cui<ref>Im Manuskript steht "cujus"</ref> nascenti proportionalis est ejus fluxio prima, tertius <math>\frac{nn-n}{2}ooz^{n-2}</math> erit ejus ''incrementum secundum'' seu ''differentia secunda'' cui nascenti proportionalis est ejus Fluxio secunda; quartus <math>\frac{n^{3}-3nn+2n}{6}o^{3}z^{n-3}</math> erit ejus ''incrementum tertium'' seu ''differentia tertia'' cui nascenti Fluxio tertia proportionalis [est] et sic deinceps in infinitum." <ref>Newton verwendet in der zitierten Passage die Exponenten <math>n</math>. im Manuskript von der Hand Daniel Bernoullis findet sich statt <math>n</math> der Buchstabe <math>\eta</math>. Im Druck in den AE, der nach Johann Bernoullis Reinschrift erfolgte, sind die Exponenten wie bei Newton mit <math>n</math> wiedergegeben. Entsprechend wurden sie auch von dort in unsere Transkription übernommen.</ref> Ergo disertis verbis Newtonus affirmat terminum tertium esse incrementum secundum seu differentiam secundam et terminum quartum esse incrementum tertium seu differentiam tertiam; interim vera differentiandi methodus, quam nunc Newtoniani admittunt, docet, quod illius seriei terminus tertius sit tantum subduplum incrementi secundi seu differentiae secundae et quartus terminus tantum subsextuplum incrementi tertii seu differentiae tertiae. Sciendum autem tres quatuorve jam diversas editiones hujus tractatus de quadraturis [[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_008r.jpg]] in lucem prodiisse, in quibus omnibus hic locus citatus iisdem verbis et sine ulla mutatione expressus conspicitur, adeo ut nec Newtonus ipse sub cujus auspiciis et revisione iteratae hae impressiones prodierunt, nec ullus alius ex ejus Promachis tam perspicax fuerit qui ibi latentem invenisset errorem typographicum. | ||
Sed audi Vir Nobilissime quid postea factum, scilicet Agnatus meus ante aliquot annos ut nosti apud Anglos agens monstravit Newtono hunc locum pro argumento valiturum quod error ipsius circa rationem resistentiae ad gravitatem commissus ex eo ortus fuerit, quod terminos suae seriei convergentis pag. 263<ref>[Text folgt]</ref> pro differentiis ulterioribus et speciatim terminum tertium pro differentia secunda applicatae perperam sumsisset, hujus argumenti vis cum facile eludi non posset, surgit nunc Keilius qui lynceus satis est ut in verbis Newtonianis ex tractatu de quadraturis citatis primus perspiciat vel somniet potius a Typotheta fuisse erratum; itaque in omnes se vertit partes torquetque se ceu mus in pice ut Lectori probet lapsum hunc facillime committi potuisse a typotheta, etsi qui factum sit quod error toties recusus, non fuerit animadversus, excusare non curet. | Sed audi Vir Nobilissime quid postea factum, scilicet Agnatus meus ante aliquot annos ut nosti apud Anglos agens monstravit Newtono hunc locum pro argumento valiturum quod error ipsius circa rationem resistentiae ad gravitatem commissus ex eo ortus fuerit, quod terminos suae seriei convergentis pag. 263<ref>[Text folgt]</ref> pro differentiis ulterioribus et speciatim terminum tertium pro differentia secunda applicatae perperam sumsisset, hujus argumenti vis cum facile eludi non posset, surgit nunc Keilius qui lynceus satis est ut in verbis Newtonianis ex tractatu de quadraturis citatis primus perspiciat vel somniet potius a Typotheta fuisse erratum; itaque in omnes se vertit partes torquetque se ceu mus in pice ut Lectori probet lapsum hunc facillime committi potuisse a typotheta, etsi qui factum sit quod error toties recusus, non fuerit animadversus, excusare non curet. | ||
Interim videamus paulo propius qua arte Keilius incrustare conetur commentum suum de vitio typographico, et qua correctione eidem mederi se speret. Pag. 347 et 348 Diar. Litter.<ref>Keill, John, ''Réponse de M. Keill, M.D. ... aux Auteurs des Remarques sur le Differérent entre M. de Leibnitz & M. Newton'': Journal Literaire de la Haye, Tom. IV, 2, Juli und August 1714, pp. 319-358</ref> ita magistraliter intonat Keilius: "Dans la lettre", inquit, "que j'ecrivis pour reponse à Mr. Leibnitsz, laquelle est imprimée dans le Commercium<ref>[Text folgt]</ref>, je fis voir que les termes de la suite convergeante ont toujours une certaine proportion aux differences cor[[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/ | Interim videamus paulo propius qua arte Keilius incrustare conetur commentum suum de vitio typographico, et qua correctione eidem mederi se speret. Pag. 347 et 348 Diar. Litter.<ref>Keill, John, ''Réponse de M. Keill, M.D. ... aux Auteurs des Remarques sur le Differérent entre M. de Leibnitz & M. Newton'': Journal Literaire de la Haye, Tom. IV, 2, Juli und August 1714, pp. 319-358</ref> ita magistraliter intonat Keilius: "Dans la lettre", inquit, "que j'ecrivis pour reponse à Mr. Leibnitsz, laquelle est imprimée dans le Commercium<ref>[Text folgt]</ref>, je fis voir que les termes de la suite convergeante ont toujours une certaine proportion aux differences cor[[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_008v.jpg]]respondantes; et par consequent que ces termes avec le coëfficient <math>o</math> sous entendu pour les rendre infiniment petits peuvent designer tres justement les differences des quantités, quand il ne s'agit que de considerer des proportions. Mr. Newton a aussi fait voir la meme chose, à la fin de son traité des quadratures, mais il s'y est glissé une erreur dans l'imprimé, le mot 'ut' ayant été mis d'abord et ensuite oublié." Ergo si Keilio credimus culpa est typographi,<ref>Im Manuskript steht "tupographi"</ref> qui particulam "ut" omisit, id vero credat Judaeus Apella non Ego<ref>Horaz, ''Satiren'', 1, 5, 100 f.</ref>; fictio enim est tam crassa tamque palpabilis, ut etiam imperitioribus vix illudere possit. Nescio sane annon longe malius honori summi Newtoni consuluisset si hic "scapham" "scapham" vocasset confitendo rotunde Newtonum ipsum aliquid humani passum et per inadvertentiam lapsum esse, quam quod ridicula adeo et ab omni verisimilitudine aliena excusatione culpam in Typographum rejicere voluerit. | ||
Quod enim haec excusatio ne umbram quidem verisimilitudinis habeat, et vel hinc colligere est quia particula illa "ut" non semel tantum omissa esse debuisset, secundo quod maxime arguit effictam excusationem, quia in iteratis editionibus omissio illa iterata subterfugere debuisset correctoris forteque ipsius Newtoni revidentis curam, hoc num probabile sit judicent alii. | Quod enim haec excusatio ne umbram quidem verisimilitudinis habeat, et vel hinc colligere est quia particula illa "ut" non semel tantum omissa esse debuisset, secundo quod maxime arguit effictam excusationem, quia in iteratis editionibus omissio illa iterata subterfugere debuisset correctoris forteque ipsius Newtoni revidentis curam, hoc num probabile sit judicent alii. | ||
Sed et ridicula est excusatio talisque videbitur quicunque eam attente conferet cum verbis ipsis Newtonianis, nam si eam [[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/ | Sed et ridicula est excusatio talisque videbitur quicunque eam attente conferet cum verbis ipsis Newtonianis, nam si eam [[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_009r.jpg]] ad mentem excusationis corrigere velimus sensum fundent prorsus puerilem et tanto viro indignum adeo ut insertio particulae "ut" magis deformet quam emendet, potiusque infarciat inutile quam suppleat defectum; imo forte a falso in falsius dejicere potest Lectorem talis infarctio, quid enim si legendum esset "tertius terminus <math>\frac{nn-n}{2}ooz^{n-2}</math> erit 'ut' ejus incrementum secundum et quartus terminus <math>\frac{n^{3}-3nn+2n}{6}o^{3}z^{n-3}</math> erit "ut" incrementum tertium.", quid, inquam, an non Lector putaret, per particulam "ut" eandem utrobique proportionem indigitari? hoc quippe sensus naturalis requirit, quasi nempe Newtonus innuere voluisset tertium terminum esse ad incrementum secundum sicut est quartus terminus ad incrementum tertium, id quod est falsissimum; ita ut minime probabile sit Newtonum qui alioquin accuratus adeo est in expressionibus suis voluisse Lectorem suum in ambiguitate relinquere et quidem tunc cum clarissime et maxime determinate loqui potuisset et debuisset dicendo tantum "tertius terminus erit subduplum incrementi secundi et quartus terminus erit subsextuplum incrementi tertii"; id quod postea Keilius ipse (perspiciens interim veram nostram differentiandi differentialia rationem) probe observavit dum in Commercio Epistolico pag. 115<ref>''Commercium epistolicum D. Johannis Collins, et aliorum De analysi promota'', jussu Societatis regiae in lucem editum. Londini. Typis Pearsonianis, 1712. Oder: [Newton, Isaac], ''Commercium Epistolicum'', 1713</ref> ab initio agens de eadem materia non contentus dicere terminos illos tertium et quartum esse "ut" incrementa secundum et tertium, sed meliora edoctus diserte monet priorem ex illis terminis esse dimidium incrementi secundi, et alterum esse sextantem incrementi tertii. Sed piget plura dicere de conficta ista Keilii excusatione, cum quam detorta, quam coacta sit nemo non videat. Hoc unum adhuc addere liceat, Keilium nimirum nimis quantum suffenum esse<ref>Catull, ''Carmina'' 20</ref> ut credat se solum sapere seque rem habere cum talpis quibus cum coecutiant quidlibet [[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_009v.jpg]] pro quolibet obtrudi potest, ut enim commentum suum de omissione patticulae "ut" plausibilius reddat, pilulam istam inaurat his verbis, "le mot 'ut' ayant été mis d'abord et ensuite oublié",<ref>Nachweisen</ref> quasi dicere vellet, particula ista de qua hic agitur cum initio apposita sit, nemo non videt illam postea omissam esse per incuriam Typothetae, sed parum emunctae naris oportet esse, cui dolus iste non suboleat, ubi enim illud "ut" Newtonus expressit nempe in his verbis "Hae fluxiones sunt ''ut'' termini serierum infinitarum convergentium",<ref>Nachweisen</ref> alio omnino respexit, nullamque per consequens affinitatem habet illud "ut" hoc loco expressum, cum altero quod Keilius intrudere cupit in sequentibus lineis. Legenti namque facile patet, Newtonum hic per fluxiones intelligere non ipsas differentias nascentes, sed tantum velocitates quibus nascuntur, quod utique sequitur ex verbis hisce "differentia prima cui nascenti proportionalis est Fluxio prima etc." adeo ut mirum non sit Newtonum hic dixisse "Fluxiones sunt ut termini" quia dicere non poterat "velocitates sunt lineae" sed "velocitates sunt ut lineae". Tantum igitur abest ex eo quod illud "ut" initio positum sit concludi posse, Newtonum idem illud in sequentibus quoque in manuscripto suo aut saltem in mente habuisse, ut potius contrarium sequatur, nam ex eo ipso quod putavit differentias exprimi per terminos seriei convergentis, differentiis vero ipsis cum sint proportionales Fluxiones, naturali deductione licet ex falso principio collegit "Fluxiones esse ut terminos serierum". Facessat ergo tandem Keilius cum misero suo incrustamento. | ||
[[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/ | [[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_010r.jpg]] Pergo nunc ad alterum argumentum speciosius revera sed nihilo magis solidum, quo Keilius probare nititur Newtono tunc cum Princip. Phil. Math.<ref>Newton, Isaac, ''Philosophiae Naturalis Principia Mathematica'', Londini 1687</ref> scriberet jam innotuisse veram methodum differentiandi differentialia. Dixeram cum Agnato meo<ref>Bernoulli, Johann I; Bernoulli, Nicolaus I Op. LXXXVIII, ''Extrait d'une Lettre de M. Bernoulli, écrite de Basle le 10. Janvier 1711, touchant la maniere de trouver les forces centrales dans les milieux resistans en raison composée de leur densités & des puissances quelconques des vitesses du mobile. Addition de M.(Nicolas) Bernoulli, Neveu de l'Auteur de ce Memoire-cy'': Mém. Paris 1711 (1714), pp. 47-53; pp. 53-56</ref> errorem Newtoni circa determinationem resistentiae ad gravitatem ex eo venisse, quod Newtonus in Princip. pag. 263<ref>Newton, Isaac, ''Philosophiae Naturalis Principia Mathematica'', Londini 1687, p.263</ref> in serie quae exprimit <math>DG</math> terminum quemlibet sumat pro aliqua ejus differentiali tanti gradus quantae dimensionis existit littera <math>o</math> in ipso termino; quod assertum nostrum confirmari ostendimus per id quod supra ex tractatu de quadraturis excerpsimus: unde factum ut quemadmodum ibi <math>\frac{ao}{e}</math> sumitur pro differentia prima ipsius <math>DG</math> et recte quidem, ita quoque secundum terminum <math>\frac{nnoo}{2e^{3}}</math> pro secunda differentia et tertium <math>\frac{anno^{3}}{2e^{5}}</math> pro tertia differentia sumi debere falso putaret. Nunc vero Keilius probaturus vid. Diarium Littera. pag. 344<ref>[Text folgt]</ref> Newtonum sumsisse differentiam secundam aequalem ipsi <math>\frac{nnoo}{e^{3}}</math> non vere aequalem ipsi <math>\frac{nno}{2e^{3}}</math>, demonstrationem aliquam adornat, qua evincitur differentiam secundam esse <math>=FG+KL</math>, citatque Princip. pag. 264 ubi Newtonus recte ponit <math>FG+KL</math> aequalem duplo termini tertii hoc est ipsi <math>\frac{nnoo}{e^{3}}</math>; Sed nihil hoc juvat Keilium, nisi simul probet Newtonum jam tum temporis cum Principia sua scriberet scivisse vel animadvertisse quod <math>FG+KL</math> sit secunda differentia ipsius <math>DG</math>, siquidem ex hactenus dictis satis superque constet, illum sumsisse <math>FG+KL</math> pro duplo differentiae secundae, quare quilibet videt hoc alterum argumentum Keilianum esse puram putam petitionem principii. | ||
[[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/ | [[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_010v.jpg]] Haec ni fallor jam sufficere possunt ad probandum nos sonticam gravissimamque habuisse causam referendi originem erroris Newtoni ad perversum quem fecit usum serierum convergentium. Caeterum vero si perrexerit Keilius aliter interpretari mentem Newtoni, quam ipsius verba diserta volunt per me licebit; sed quia non tenebar divinare mentem male expressam sive Newtoni ipsius sive Typographi culpa, non video quo jure Keilius audeat pag. 345, Diar. litt.<ref>Keill schreibt "c'est une erreur d'un genre tout extraordinaire". </ref> me postulare erroris ex culpa alterius enati eumque vocare errorem enormem et "generis omnino extraordinarii". | ||
Verum si dicendum quod res est, ex eo mihi crimen facit Keilius, quod viderim detexerimque errorem Newtoni de male determinata resistentia, deprehendi aliquid sinistri in Viro quem tanquam idolum adorat quemque infallibilem putat, debebam venerabundus dissimulare et silentio premere, hoc autem miser ego non feci, hinc illae lachrymae!<ref>Terenz, ''Andria'' 1, 1, 99</ref> en scelus meum! "cur aliquid vidi?<ref>Der Kopist hat "feci" geschrieben. Johann I Bernoulli hat dies in "vidi" korrigiert, ohne jedoch "feci" zu streichen.</ref> cur lumina conscia feci?"<ref>"Cur aliquid vidi? cur noxia lumina feci?" Ovid, ''Tristiae'' 2, 103-104. </ref> | Verum si dicendum quod res est, ex eo mihi crimen facit Keilius, quod viderim detexerimque errorem Newtoni de male determinata resistentia, deprehendi aliquid sinistri in Viro quem tanquam idolum adorat quemque infallibilem putat, debebam venerabundus dissimulare et silentio premere, hoc autem miser ego non feci, hinc illae lachrymae!<ref>Terenz, ''Andria'' 1, 1, 99</ref> en scelus meum! "cur aliquid vidi?<ref>Der Kopist hat "feci" geschrieben. Johann I Bernoulli hat dies in "vidi" korrigiert, ohne jedoch "feci" zu streichen.</ref> cur lumina conscia feci?"<ref>"Cur aliquid vidi? cur noxia lumina feci?" Ovid, ''Tristiae'' 2, 103-104. </ref> | ||
Quis ergo miretur si tanti sceleris reus condemner ibid. a Keilio ad deprecationem publicam delicti; et ad confessionem erroris quem alius commisit nec interim ausit quispiam sciscitari, cur mihi non tribuat justitiam Newtonus, qui ab Agnato meo in Anglia degente erroris a me detecti commonitus, in nova operis sui editione<ref>Newton, Isaac, ''Principia'', 2. Aufl.</ref> eum postea correxit, nulla interim facta mentione nec mei nec monitoris; sed hoc nihil novi est in quibusdam Anglis qui sibi solis licere putant aliorum inventa tanquam sua impune usurpare, quando ipsi Hominesque Deosque invocant, ubi vident vel saltem videre arbitrantur extraneos in suorum inventa manus inferre. Exempla sunt quorundam ut Cheynaei, Des hayes, Tailori, aliorumque qui passim [[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/ | Quis ergo miretur si tanti sceleris reus condemner ibid. a Keilio ad deprecationem publicam delicti; et ad confessionem erroris quem alius commisit nec interim ausit quispiam sciscitari, cur mihi non tribuat justitiam Newtonus, qui ab Agnato meo in Anglia degente erroris a me detecti commonitus, in nova operis sui editione<ref>Newton, Isaac, ''Principia'', 2. Aufl.</ref> eum postea correxit, nulla interim facta mentione nec mei nec monitoris; sed hoc nihil novi est in quibusdam Anglis qui sibi solis licere putant aliorum inventa tanquam sua impune usurpare, quando ipsi Hominesque Deosque invocant, ubi vident vel saltem videre arbitrantur extraneos in suorum inventa manus inferre. Exempla sunt quorundam ut Cheynaei, Des hayes, Tailori, aliorumque qui passim [[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_011r.jpg]] inventis meis sunt usi alienisque vel nulla prorsus facta mentione Auctoris, vel eum in praefatione tantum ambigue nominantes, ita ut quid proprie ad ipsum pertineat ex ipso contextu non appareat. Id quod inprimis observare est in Deshayes, qui certe maximam sui libri<ref>Hayes, Charles, ''A Treatise of Fluxions: or, an Introduction to Mathematical Philosophy'', London (Midwinter & Leigh) 1704</ref> partem ex nostris compilavit, quae fere de verbo ad verbum in vernaculam suam linguam transtulit, unde vero ea descripserit, altum servat silentium, nisi quando Newtoniana refert, tunc enim Inventoris nomen frequentissime occurrit. | ||
Propero ad alia: audet Keilius in Diar. Litter. p. 346<ref>Keill, John, ''Réponse de M. Keill, M.D. ... aux Auteurs des Remarques sur le Differérent entre M. de Leibnitz & M. Newton'': Journal Literaire de la Haye, Tom. I,. 2, Juli und August 1714, pp. 319-358</ref> insinuare me de seriebus convergentibus dixisse quod sint erroneae, ego vero hoc nego et pernego, scio enim has series esse veras et exhibere id quod exhibere debent, nempe valorem quantitatis irrationalis in seriem expansae: sed id dixi quod etiamnum dico, incautum scil. abusu earum serierum facile in errorem abduci posse, ut certe ipsi Newtono contigisse adhuc dum credimus. De coetero non videmus, quid istis seriebus opus nunc sit, postquam calculus integralis noster una cum differentiali invaluit, per quem brevius, tutius, commodius et jucundius consequimur quicquid per series illas obtinetur et multo plura. Deinde non capio quid moverit Keilium ad sibi persuadendum me non bene intellexisse, ut ibid. ait, doctrinam serierum convergentium cum tamen in hac materia serierum cujuscunque generis ego, si quisquam alius, magnam olim temporis mei partem triverim, ut colligere est ex illis quae passim hac de re publicavi.<ref>Bernoulli, Johann I Op. XXI, ''Additamentum effectionis omnium quadraturarum & rectificationum curvarum per seriem quandam generalissimam'': AE Novembris 1694, pp. 437-441 (?)</ref> Imo et ipsissimam seriem per extractionem radicis continuatam more Newtoni inventam, ego proprio Marte antequam id a Newtono praestitum scirem, per methodum aliam et a Newtoniana diversissimam erui<ref>[Text folgt]</ref> et jam tum [[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/ | Propero ad alia: audet Keilius in Diar. Litter. p. 346<ref>Keill, John, ''Réponse de M. Keill, M.D. ... aux Auteurs des Remarques sur le Differérent entre M. de Leibnitz & M. Newton'': Journal Literaire de la Haye, Tom. I,. 2, Juli und August 1714, pp. 319-358</ref> insinuare me de seriebus convergentibus dixisse quod sint erroneae, ego vero hoc nego et pernego, scio enim has series esse veras et exhibere id quod exhibere debent, nempe valorem quantitatis irrationalis in seriem expansae: sed id dixi quod etiamnum dico, incautum scil. abusu earum serierum facile in errorem abduci posse, ut certe ipsi Newtono contigisse adhuc dum credimus. De coetero non videmus, quid istis seriebus opus nunc sit, postquam calculus integralis noster una cum differentiali invaluit, per quem brevius, tutius, commodius et jucundius consequimur quicquid per series illas obtinetur et multo plura. Deinde non capio quid moverit Keilium ad sibi persuadendum me non bene intellexisse, ut ibid. ait, doctrinam serierum convergentium cum tamen in hac materia serierum cujuscunque generis ego, si quisquam alius, magnam olim temporis mei partem triverim, ut colligere est ex illis quae passim hac de re publicavi.<ref>Bernoulli, Johann I Op. XXI, ''Additamentum effectionis omnium quadraturarum & rectificationum curvarum per seriem quandam generalissimam'': AE Novembris 1694, pp. 437-441 (?)</ref> Imo et ipsissimam seriem per extractionem radicis continuatam more Newtoni inventam, ego proprio Marte antequam id a Newtono praestitum scirem, per methodum aliam et a Newtoniana diversissimam erui<ref>[Text folgt]</ref> et jam tum [[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_011v.jpg]] communicavi cum Illustr. Hospitalio,<ref>[Text folgt]</ref> cum vix Geometriam sublimiorem delibare per unum alterumve annum incepissem. | ||
Sed revertar venia Tua Vir Celeb. ad considerationem resistentiae determinandae corporum curvas datas describentium,<ref>Im Manuskript steht "describentiam"</ref> ubi vidimus halluzinatum esse Newtonum; qui ergo monitus, ut in altera Edit. Princip. Phil.<ref>[Text folgt]</ref> suum errorem corrigeret, substituit chartis dissectis (locum enim illum ubi error extabat typi jam superaverant, cum se errasse rescisceret) aliquot folia in quae conjecerat novum canonem pro invenienda relatione resistentiae ad gravitatem.<ref>In der 2. Auflage der ''Principia'' ist der Text auf p. 264 Mitte bis p. 265 Mitte von "praeterea <math>CF</math> et latus quadratum..." bis "...solvetur problema" weggelassen, und auf p. 263 durch einen drei Zeilen umfassenden neuen Text ersetzt. Für Einzelheiten cf. Derek Whitesides Kommentar in: ''The mathematical Papers of Isaac Newton'', Bd. 8, Cambridge 1981, pp. 312-424 und Guicciardini, Nicolò, ''Reading the Principia. The Debate on Newton's Mathematical Methods for Natural Philosophy from 1687 to 1736'', Cambridge 1999, pp. 233-242</ref> Ut igitur videat Keilius me veritatem venerari quomodo et quandocunque se mihi offert, meque paratum esse unicuique suum tribuere, candide et ingenue confiteor, quod novus iste Canon Newtoni, sit verus, bonus et elegans, an autem tantae sit praecisionis et tam extraordinariae elegantiae, ceu Keilius pro more suo exaggerat, ut ideo alter ille quem ego dederam in Act. Lips. 1713, p. 121<ref>Bernoulli, Johann I Op. XC, ''De Motu Corporum gravium, Pendulorum, & Projectilium in mediis non resistentibus & resistentibus supposita Gravitate uniformi & non uniformi atque ad quodvis punctum datum tendente, et de variis aliis huc spectantibus, Demonstrationes Geometricae. Continuatio Demonstrationum, quarum initium Mensi superiori pag. 77 seqv. insertum est'': AE Februarii 1713, pp. 77-95; AE Martii 1713, pp. 115-132</ref> ei praeferri non mereatur, judicet peritus lector, qui legerit utrumque ac tum observaverit, quod is quem Newtonus dedit porrigatur duntaxat ad casus particulares, ubi nimirum gravitas supponitur uniformis et non nisi secundum directiones ad horizontem perpendiculares; quod autem Canon quem ego exhibeo loco citato sit multo et clarior et universalior ut pote sese extendens ad gravitatem non solum uniformem sed quacunque lege variabilem, et non tantum ad Horizontem perpendiculariter, sed ad quodcunque punctum datum tendentem. | Sed revertar venia Tua Vir Celeb. ad considerationem resistentiae determinandae corporum curvas datas describentium,<ref>Im Manuskript steht "describentiam"</ref> ubi vidimus halluzinatum esse Newtonum; qui ergo monitus, ut in altera Edit. Princip. Phil.<ref>[Text folgt]</ref> suum errorem corrigeret, substituit chartis dissectis (locum enim illum ubi error extabat typi jam superaverant, cum se errasse rescisceret) aliquot folia in quae conjecerat novum canonem pro invenienda relatione resistentiae ad gravitatem.<ref>In der 2. Auflage der ''Principia'' ist der Text auf p. 264 Mitte bis p. 265 Mitte von "praeterea <math>CF</math> et latus quadratum..." bis "...solvetur problema" weggelassen, und auf p. 263 durch einen drei Zeilen umfassenden neuen Text ersetzt. Für Einzelheiten cf. Derek Whitesides Kommentar in: ''The mathematical Papers of Isaac Newton'', Bd. 8, Cambridge 1981, pp. 312-424 und Guicciardini, Nicolò, ''Reading the Principia. The Debate on Newton's Mathematical Methods for Natural Philosophy from 1687 to 1736'', Cambridge 1999, pp. 233-242</ref> Ut igitur videat Keilius me veritatem venerari quomodo et quandocunque se mihi offert, meque paratum esse unicuique suum tribuere, candide et ingenue confiteor, quod novus iste Canon Newtoni, sit verus, bonus et elegans, an autem tantae sit praecisionis et tam extraordinariae elegantiae, ceu Keilius pro more suo exaggerat, ut ideo alter ille quem ego dederam in Act. Lips. 1713, p. 121<ref>Bernoulli, Johann I Op. XC, ''De Motu Corporum gravium, Pendulorum, & Projectilium in mediis non resistentibus & resistentibus supposita Gravitate uniformi & non uniformi atque ad quodvis punctum datum tendente, et de variis aliis huc spectantibus, Demonstrationes Geometricae. Continuatio Demonstrationum, quarum initium Mensi superiori pag. 77 seqv. insertum est'': AE Februarii 1713, pp. 77-95; AE Martii 1713, pp. 115-132</ref> ei praeferri non mereatur, judicet peritus lector, qui legerit utrumque ac tum observaverit, quod is quem Newtonus dedit porrigatur duntaxat ad casus particulares, ubi nimirum gravitas supponitur uniformis et non nisi secundum directiones ad horizontem perpendiculares; quod autem Canon quem ego exhibeo loco citato sit multo et clarior et universalior ut pote sese extendens ad gravitatem non solum uniformem sed quacunque lege variabilem, et non tantum ad Horizontem perpendiculariter, sed ad quodcunque punctum datum tendentem. | ||
[[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/ | [[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_012r.jpg]] Testem produco nostrum Hermannum, qui in suis ad me Litteris d. 14. Jan. 1715 haec habet, "Caeterum", inquit, "substituta (a Newtono) erroneae methodus inveniendi densitatem medii ut mobile datam curvam in hoc medio resistente describere possit, etsi bona videtur nulla tamen ratione cum tua idem multoque plura praestante comparari meretur, quod quidem Newtonus ipse fateri quodammodo videtur, quod colligo ex illis quae Cl. Varignonius in postremis suis mihi scribit 'Mr. Moivre me mande aussi que Mr. Newton est charmé de la solution que Mr. Bernoulli l'Oncle a donné de son probleme.'."<ref>Der hier zitierte Text findet sich nicht im angegebenen Brief Hermanns sondern in dessen Brief an Johann I Bernoulli von 1714 10 01.</ref> Quod Hermannus a Varignonio sibi scriptum refert, hic idem quoque mihi scripsit:<ref>Pierre Varignon an Johann I Bernoulli von 1714 07 16, UB Basel, L I a 670, Nr. 118{*}</ref> imo et Cl. Moivreus egregius sane Geometra apud Anglos judicium Newtoni de mea solutione mecum communicans his utitur verbis in Litteris suis ad me ipsum exaratis d. 28. Jun. 1714. "J'ai vû," inquit, "Mr. Newton qui m'a dit, qu'il avoit lû avec beaucoup de plaisir vôtre methode de resoudre le probleme de la resistance, il Vous rend justice, en homme, qui n'est nullement offensé, il dit qu'elle est admirablement belle et meme qu'elle est commode pour des expressions finies."<ref>Abraham de Moivre an Johann I Bernoulli von 1714 06 28, UB Basel, L I a 664, Nr. 10{*}</ref> Ex quibus fere colligere licet, Keilium partes Newtoni tueri ultra quam Newtono gratum est, et non ex veritatis amore, sed ''ex praepostero in Gentem suam studio''; an autem deceat Virum cordatum omnia sive bona sive mala mordicus defendere ideo tantum, quia ad populares suos spectant, de eo judicent saniores. Keilius qui minaciter adeo insultat, non dico mihi sed Viris de re Mathematica longe meritissimis, deberet ipse prius sua ostendere inventa quibus [[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_012v.jpg]] Divinam hanc scientiam locupletaverit, quam se de aliorum inventis in judicem erigere sustineat: sed nihil hactenus ab eo videre mihi contigit, quam quod ex aliis et quidem ex ipso Newtono exscripsit et saepe quidem suppressis Auctorum nominibus compilavit, scilicet ipsi licent, quae in aliis tam indignabundus carpere conatur. Caeterum nescio an a suis laudem quam forte expectabit sit reportaturus, eo quod Newtonum Virum sane magnum sed hominem tamen supra humanam sortem evehere conetur, quasi errare, quod humanum est ab eo alienum esset, aut sicubi erraverit id a nobis notari nefas esset et profanum: quo immodico placendi studio vereor ne se suspectae fidei reddat Keilius apud modestiores Anglos, tunc quoque cum in Newtonum justissima et meritissima congerit encomia, quando scil. vident illum ad omnia defendenda aeque paratum et promtum existere tanquam ex tripode dicta sciat enim velim praeter illum jam notatum errorem de proportione resistentiae ad gravitatem male determinata forte et alios monstrari posse in Princip. Math. qui emendari mererentur quosque si tanto ut putat Keilius, carpendi pruritu laborarem quin propalassem nihil impedivisset. Liceat hic exempli loco commemorare eum, cujus jam meminit Hermannus noster in Phoronomia sua nuper edita pag. 394<ref>[Text folgt]</ref> ubi optime notat Newtonum paralogizantem in princip. Math. pag. 330<ref>[Text folgt]</ref> primae edit. quando demonstrare conatur, "aquam ea cum velocitate erumpere ex vasis, qua motu suo in altum converso ad dimidiam altitudinem aquae supra foramen evehi possit",<ref>Hermann, Jacob Na. 022, ''Phoronomia: sive de viribus et motibus corporum solidorum et fluidorum libri duo, autore Jacobo Hermanno Basil.'', Amstelaedami 1716, p. 394</ref> quam autem propositionem (cujus falsitatem ipsa quoque experientia refellit) in altera edit. omisit, sed nullam aliam substituit pro vera velocitate aquae erumpentis demonstranda, quae tanta est praecise quantam acquireret corpus grave casu accelerato ex altitudine aquae supra foramen: cujus [[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_013r.jpg]] rei veritatem ab aliis sine demonstratione assumtam, ego primus apodictice demonstravi; meamque demonstrationem ante quatuor circiter annos Cl. Hermanno ex Italia reduci et hac transeunti Francofurtum exposui, cujus vero postea oblitus existimavit se primum esse demonstratorem principii illius hydraulici vid. phoron. pag. 393.<ref>[Text folgt]</ref> Sed cum nuper ei per litteras refricuissem memoriam,<ref>Johann I Bernoulli an Jacob Hermann von 1715 12 21, L I a 659, Nr. 21. </ref> meamque demonstrationem de novo exposuissem, recordatus est, verum esse quod dixi promisitque hoc publice agnoscere et simul demonstrationem illam meam in lucem edere.<ref>Jacob Hermann an Johann I Bernoulli von 1716 02 19. Hermann publizierte in der Tat den Beweis Johann Bernoullis als Auszug aus dessen Brief von 1715 12 21 im Anhang zu seiner Arbeit Na. 021,'' De Vibrationibus Chordarum tensarum Disquisitio'': AE Augusti 1716, pp. 375-376.</ref> Interim non est cur credat Keilius, alterum hunc errorem Newtoni eo nunc fine adduci, ut ejus existimationem elevare velim, eum enim cum aliis quibusdam a me observatis diu dissimulavi, nec a me in apricum foret prolatus nisi hoc ante me fecisset Cl. Hermannus. Si aeque Te lassum fore scirem legendo ac ego sum scribendo, deberem Vir Nobiliss. Te dimittere ac patientiae Tuae rationem habere. Sed patere ut paucis adhuc reprimam insultus Keilii, quibus aggressus est solutionem meam problematis inversi virium centralium publicatam in Commentariis Acad. Reg. Scient. Paris. anni 1710, pag. 521,<ref>Bernoulli, Johann I Op. LXXXVI, ''Extrait de la Réponse de M. Bernoulli à M. Herman, datée de Basle le 7. Octobre 1710'': Mém. Paris 1710 (1712), pp. 521-533.</ref> Edit. Paris. usque adeo enim me persequitur ut nusquam et ne post altare quidem tutus sim, tanta scil. est profanatio tamque inexpiabile crimen aliquid contra Newtonum tanquam sacratissimum caput mussitasse. Experior profecto verissimam esse descriptionem Keilii aliunde transmissam veluti Athletae ardentissimi, "Ce Mr. Keil est un ardent Champion" quod ex Anglia ipsa perscribitur: ejus modi Heroum exercitu totum orbem Mathematicorum sibi subjugaret Newtonus, modo suppeterent arma ab ipso subministranda, | ||
[[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/ | [[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_013v.jpg]] quibus illi militare possent: sed pergo. | ||
Nova itaque illa aggressio Keiliana extat in Transact. Londin. mens. septembr. 1714, num. 340, sed demum publicata anno superiori 1715.<ref>Keill, John, ''Observationes in ea quae edidit Celeberrimus Geometra Johannes Bernoulli in Commentariis Physico Mathematicis Parisiensibus Anno 1710 de inverso Problemate Virium Centripetarum. Et ejusdem Problematis Solutio nova'': Phil. Trans. Nr. 340, September 1714, pp. 91-111 (datiert ?November 24. 1713?)</ref> Scriptum ipsum, quod ad me non pervenit, non vidi, sed quantum video, ex eo quod inde excerptum mihique transmissum est,<ref>Nachweisen</ref> nullius quidem erroris me arguit Keilius, quo valde gaudeo, sed tota ejus accusatio ad haec tria redit capita. 1.<sup>o</sup> Quod Lemma more meo demonstratum pag. 524 in Comm. Acad. Scient.<ref>Johann Bernoulli gibt an der genannten Stelle auf pp. 524-525 einen Beweis zu dem im Folgenden zitierten Lemma von Newton, der nach seiner Ausssage "plus simplement" geführt werden kann. Bernoulli, Johann I, Op. LXXXVI, ''Extrait de la Réponse de M. Bernoulli à M. Herman, datée de Basle le 7. Octobre 1710'', Mém. Paris 1710 (1712), pp. 521-533. </ref> ita sonans, "si corpus, cogente vi quacunque centripeta, moveatur utcunque, et corpus aliud recta ascendat vel descendat, sintque eorum velocitates in aliquo aequalium altitudinum casu aequales, velocitates eorum in omnibus altitudinibus erunt aequales." Quod, nempe hoc lemma<ref>Die Passage von "ita sonans" bis "hoc lemma" ist in der gedruckten Fassung dieses Briefes in den AE weggelassen.</ref> nihil aliud sit quam ipsa Newtoni Propos. XL, Princip. Math. p. 125, Edit. primae<ref>Newton, Isaac, ''Philosophiae Naturalis Principia Mathematica'', Londini 1687, lib. I, sectio VIII, prop. XL, theorema XIII, p. 125</ref> et demonstrationem ejus ab ipso traditam esse simpliciorem quam meam. 2.<sup>o</sup> Quod male egerim quando Newtono imputavi Eum supponere sine demonstratione, curvas a ''tali vi'' descriptas esse sectiones conicas, nempe vi centripeta existente reciproce proportionali quadrato distantiae. Item quod in me retorqueri possit me etiam non possedisse demonstrationes plurium propositionum, quas indemonstratas passim publicaverim. 3.<sup>o</sup> Quod mea demonstratio hujus propositionis inversae sit admodum intricata; quod vero in nova Principiorum Editione<ref>[Text folgt]</ref> facilior multo et magis clara licet tribus verbis extet demonstratio quam mea sit. [[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/ | Nova itaque illa aggressio Keiliana extat in Transact. Londin. mens. septembr. 1714, num. 340, sed demum publicata anno superiori 1715.<ref>Keill, John, ''Observationes in ea quae edidit Celeberrimus Geometra Johannes Bernoulli in Commentariis Physico Mathematicis Parisiensibus Anno 1710 de inverso Problemate Virium Centripetarum. Et ejusdem Problematis Solutio nova'': Phil. Trans. Nr. 340, September 1714, pp. 91-111 (datiert ?November 24. 1713?)</ref> Scriptum ipsum, quod ad me non pervenit, non vidi, sed quantum video, ex eo quod inde excerptum mihique transmissum est,<ref>Nachweisen</ref> nullius quidem erroris me arguit Keilius, quo valde gaudeo, sed tota ejus accusatio ad haec tria redit capita. 1.<sup>o</sup> Quod Lemma more meo demonstratum pag. 524 in Comm. Acad. Scient.<ref>Johann Bernoulli gibt an der genannten Stelle auf pp. 524-525 einen Beweis zu dem im Folgenden zitierten Lemma von Newton, der nach seiner Ausssage "plus simplement" geführt werden kann. Bernoulli, Johann I, Op. LXXXVI, ''Extrait de la Réponse de M. Bernoulli à M. Herman, datée de Basle le 7. Octobre 1710'', Mém. Paris 1710 (1712), pp. 521-533. </ref> ita sonans, "si corpus, cogente vi quacunque centripeta, moveatur utcunque, et corpus aliud recta ascendat vel descendat, sintque eorum velocitates in aliquo aequalium altitudinum casu aequales, velocitates eorum in omnibus altitudinibus erunt aequales." Quod, nempe hoc lemma<ref>Die Passage von "ita sonans" bis "hoc lemma" ist in der gedruckten Fassung dieses Briefes in den AE weggelassen.</ref> nihil aliud sit quam ipsa Newtoni Propos. XL, Princip. Math. p. 125, Edit. primae<ref>Newton, Isaac, ''Philosophiae Naturalis Principia Mathematica'', Londini 1687, lib. I, sectio VIII, prop. XL, theorema XIII, p. 125</ref> et demonstrationem ejus ab ipso traditam esse simpliciorem quam meam. 2.<sup>o</sup> Quod male egerim quando Newtono imputavi Eum supponere sine demonstratione, curvas a ''tali vi'' descriptas esse sectiones conicas, nempe vi centripeta existente reciproce proportionali quadrato distantiae. Item quod in me retorqueri possit me etiam non possedisse demonstrationes plurium propositionum, quas indemonstratas passim publicaverim. 3.<sup>o</sup> Quod mea demonstratio hujus propositionis inversae sit admodum intricata; quod vero in nova Principiorum Editione<ref>[Text folgt]</ref> facilior multo et magis clara licet tribus verbis extet demonstratio quam mea sit. [[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_014r.jpg]] Ad quae reposui in hunc fere modum. 1.<sup>o</sup> Lemma meum idem esse cum Propos. XL Newtoni non dissimulavi; sed contra aperte dixi pag. 524, Comment. Paris.<ref>[Text folgt]</ref> hujus lemmatis demonstrationem reperiri in Newtoni Princip. Math. Phil. Nat. pag. 125,<ref>[Text folgt]</ref> adeo ut huic Viro suum tribuerim, quid ergo hac in parte reprehendat Keilius et quo jure, non capio. Sed decretorie pronunciare, ut Keilius facit, Newtoni[an]am demonstrationem mea esse simpliciorem, non est de officio Keilii partium studio nimis dediti: neque eum pro judice idoneo agnosco; relinquo judicium aliis qui nondum jurarunt in vexillum Newtoni. 2.<sup>o</sup> Inepte ageret qui vellet causari me demonstrationes non possedisse plurium propositionum a me publicatarum sine demonstrationibus; quis enim inveniet et publicabit aliquam veritatem, cujus demonstrationem non habeat? nisi id fiat forte per inspirationem vel revelationem supernaturalem: tale quid autem in rebus Mathematicis de me vel de aliis cogitare vel suspicari ridiculum esset; sed multo magis ridiculum est, quod Keilius tam disparem retorsionem faciat, quae ne γρυ quidem similitudinis habet cum eo quod in Newtono modeste reprehendi, nam quod probe notandum nec postea secus interpretandum, minime reprehendi id quod statuerit Newtonus propositionem inversam virium centralium quae quadratis distantiarum a centro reciproce proportionantur, neque quod nullam hujus propositionis inversae demonstrationem dederit. Poterat quippe simpliciter hoc affirmare et asserere se habere demonstrationem propositionis hujus inversae, qua nempe solas sectiones conicas satisfacere [[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_014v.jpg]] probatur, tantum certe tribuissem candori Newtoni, ut ipsius verbis sine ullo scrupulo fidem habiturus fuissem. Attendat igitur Keilius quid sit illud quod fuerit improbatum, certe non ipsa assertio Newtoni, sed forma assertionis, dum ex demonstratione propositionis directae colligendam esse contendit eadem opera propositionem inversam, "Ex tribus", inquit pag. 55, Princip. Edit. primae,<ref>[Text folgt]</ref> "novissimis Propositionibus consequens est etc.". Quid, quaeso, sibi vult το "consequens est"? an non idem est ac si dixisset ex propositionibus istis directis "ultro fluunt inversae"? Porro pag. 49<ref>[Text folgt]</ref> contra regulam bonae conversionis colligit et concludit sine demonstratione his verbis, "unde vicissim, si vis sit ut distantia etc.". Quod si hoc non in forma conclusionis protulisset, sed simpliciter asseverasset sibi aliunde constare de veritate illius conversae, hoc sane ut jam dixi nemo improbasset; at vero hoc improbandum est quod velit posterioris veritatem ex prioris demonstratione sponte fluere patescere, sequi et colligi posse, utpote quod non majori jure ex eo concluditur, quam si quis vellet ex affectione qua gaudet spiralis logarithmica, qua nempe fit ut ad illam describendam requiratur vis centripeta cubis distantiarum reciproce proportionalem, protinus concludere dicendo, "unde vicissim si vis sit reciproce ut cubus distantiae, movebitur corpus in spirali Logarithmica", nam nulla foret necessitas [[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_015r.jpg]] sequelae, quia eadem lege virium existente moveri posset in spirali hyperbolica aliorumve generum curvis, ceu jam notum est. 3.<sup>o</sup> Quod Keilius demonstrationem meam vel potius analysin ex qua patet veritas inversi, nempe solas sectiones conicas describi posse per vim centripetam quadratis distantiarum reciproce proportionalem, intricatam et perplexam causetur nihil me movere debet, qui scio homini praejudiciis occupato et in fidem alterius mancipato sui juris non amplius existenti omnia displicere sive pulchra sint sive non, modo sciat non provenire ab eo cui se addixit. Audiamus potius judicium aliorum qui harum rerum sunt intelligentissimi et a partium studio longe remoti; inter eos nequaquam postremus est Celeb. Varignonius, Vir profundae eruditionis et in Geometricis acutissimi ingenii, ille in Comment. Paris. an. 1710, pag. 533<ref>Varignon, Pierre, ''Des forces centrales inverses'': Mém. Paris 1710, p. 533</ref> analysin istam qua sectiones conicas eruo ex supposita vi centripeta reciproce proportionali quadratis distantiarum, quamque Keilius tanquam intricatam nihili faciendam putat, his verbis nimium mihi honorificis extollit, "L'ecrit", inquit, "que je viens de lire de ... Bernoulli renferme deux solutions de la seconde de ces deux questions et une de la premiere dans lesquelles solutions paroit la sagacité ordinaire, ''surtout'' dans la maniere dont il deduit de la premiere de ces deux-là, que dans ''l'hypothese des forces centrales en raison reciproque des quarrés des distances du mobile à leur centre ou foyer'', ce mobile doit toujours decrire quelque section [[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_015v.jpg]] conique".<ref>Varignon, Pierre, ''Des forces centrales inverses'': Mém. Paris 1710, p. 533</ref> Neque minus luculentum<ref>Im Manuskript steht "lusculentum"</ref> est testimonium quod eidem analysi tribuit in fine sui scripti pag. 543<ref>Varignon, Pierre, ''Des forces centrales inverses'': Mém. Paris 1710, p. 543</ref> et quidem his verbis "Il est encore à remarquer que les quadratures supposées dans la construction generale, la rendent beaucoup plus facile que les constructions particulieres, pour lesquelles il faut trouver ces quadratures, ou les eviter quand les courbes sont Algebriques, comme... Bernoulli a fait dans le cas ordinaire des temps en raison des aires centrales et des forces en raison reciproque des quarrés des distances du mobile au centre de ces forces: la construction qu'il vient de donner de la courbe requise en ce cas et ''la maniere dont il fait voir que cette courbe doit toujours être une section conique'', sont d'une sagacité et d'une adresse qui repondent à ce qu'il en paroit dans tout ce qu'il a donné jusqu'ici au public." | ||
Sic igitur Varignonius longe melius vim percepit meae demonstrationis quam Keilius percipere voluit, nimirum percepit, quod aliquid altius quam nuda demonstratio nominari mereatur, et quod sit potius via analytica qua ''a priori'' penetrari potest ad cognitionem omnium curvarum satisfacientium hypothesi virium reciproce proportionalium quadratis distantiarum: an vero cum tali methodo in comparationem venire possit Demonstratio illa Newtoniana, tribus ut inquit Keilius verbis extans in nova Princip. Edit.<ref>Newton, Isaac, ''Philosophiae Naturalis Principia Mathematica'', 1713</ref> aut an inde concludi possit Newtonum reapse habuisse methodum analyticam inveniendi omnes possibi[[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/ | Sic igitur Varignonius longe melius vim percepit meae demonstrationis quam Keilius percipere voluit, nimirum percepit, quod aliquid altius quam nuda demonstratio nominari mereatur, et quod sit potius via analytica qua ''a priori'' penetrari potest ad cognitionem omnium curvarum satisfacientium hypothesi virium reciproce proportionalium quadratis distantiarum: an vero cum tali methodo in comparationem venire possit Demonstratio illa Newtoniana, tribus ut inquit Keilius verbis extans in nova Princip. Edit.<ref>Newton, Isaac, ''Philosophiae Naturalis Principia Mathematica'', 1713</ref> aut an inde concludi possit Newtonum reapse habuisse methodum analyticam inveniendi omnes possibi[[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_016r.jpg]]les curvas quae datae Virium hypothesi conveniant, nec meum nec Keilii est judicare, sed judicent alii, quorum non interest huic illive favere et qui nil nisi veritatem sectantur. Judicent quoque de insipida illius exagitatione qua prosequitur formulam meam <math>dz=\frac{aacdx}{\sqrt{abx^{4}-x^{4}\int\varphi dx-aaccxx}}</math>, ideo tantum quia identitatem quandem deprehendit cum expressione Newtoniana propos. 41 quando inficete jocatur "meam non magis a Newtoniana discrepare quam verba latinis litteris expressa differunt ab iisdem verbis scriptis in graecis caracteribus".<ref>Keill, John, ''Observationes in ea quae edidit Celeberrimus Geometra Johannes Bernoulli in Commentariis Physico Mathematicis Parisiensibus Anno 1710 de inverso Problemate Virium Centripetarum. Et ejusdem Problematis Solutio nova'': Phil. Trans. Nr. 340, September 1714, pp. 91-111 (datiert "November 24. 1713").</ref> Judicent, inquam, annon vel sola diversitas quae maxima est inter utriusque notandi rationem satis superque indicet, me ne cogitasse quidem de instituenda comparatione inter utramque formulam. Examinent etiam considerentque quam brevi via quamque diversa a Newtoniana incesserim, dicantque postea an alius quispiam praeter Keilium sibi persuadere possit, meam formulam esse ex Newtoniana desumtam; hoc interim non temere dico, quod si nempe Keilius non firmiora habet argumenta, quibus probet Leibnitium calculum suum mutuatum esse a Newtono, nobis fas erit credere, chimaeram esse quicquid argumentorum loco nobis obtrudere voluit. Ut enim hoc unum addam, etsi vel maxime formula mea idem exprimat, quod Newtoniana (et qui possent in diversum abire nisi alterutra falsa esset?) nullam video consequentiam, meam ab illa esse mutuatam; quid enim impediat, quominus una eademque veritas per vias toto coelo diversas obtineatur, Keilius nullam rationem allegabit.<ref>Hier endet der später als ''Epistola pro eminente mathematico'' gedruckte Text''. ''</ref> | ||
[[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/ | [[File:file_icon.gif|link=http://www.ub.unibas.ch/digi/bez/bernoullibriefe/jpg/bernoulli-jpg/BAU_5_000057816_016v.jpg]] Sufficiant tandem ista, quae omnia limatissimo Tuo Judicio Vir Nobilissime submittere volui, ut si luce digna deprehendas, in Actis Lips. publicare possit;<ref>{publiziert von Christian Wolff}, 1716 07 00 (Nr. 201), ''Epistola pro eminente Mathematico, Dn. Johanne Bernoullio, contra quendam ex Anglia antogonistam [sic] scripta'': AE Julii 1716, pp. 296-315</ref> neque me reluctantem habebis, si totius hujus Epistolae contentum typis mandare volueris mutatis mutandis et omissis omittendis. Consentio ut ante publicationem cum Illustr. Leibnitio communicetur, quia nollem eo invito aliquid mea ex parte in lucem prodiret: spero autem fore, ut neutiquam improbet quas praesertim congessi rationes validissimas, quibus quicquid ogganiat Keilius aliive sectatores, firmissime adstruitus, Newtonum eo tempore quo scripsit sua Princip. phil. Math.<ref>Newton, Isaac, ''Philosophiae Naturalis Principia Mathematica'', Londini 1687</ref> nondum perspectam habuisse methodum differentiandi differentialia. Quod vero attinet ad formam sub qua optarem ut contenta haec prodirent, poterunt conservare formam epistolae, sed ita si placet mutandae, tanquam ab Anonymo, vel ab alio sive veri sive ficti nominis scripta fuisset: ut verbo dicam, rem totam ea qua polles prudentia dirigas, ne Keilius suspicetur, me hujus Epistolae scriptorem esse; ingratum enim mihi valde foret, a Keilio bile sua perfricari et contumeliose traduci ut solent ejus Antagonistae, postquam ille me hactenus satis humaniter tractavit. Quod superest Vale Vir Nobilissime, mihique favere perge. | ||
Dabam Basileae a. d. VIII. Aprilis MDCCXVI. | Dabam Basileae a. d. VIII. Aprilis MDCCXVI. |
Version vom 9. Dezember 2014, 13:41 Uhr
Kurzinformationen zum Brief mehr ... | |
---|---|
Autor | Bernoulli, Johann I, 1667-1748 |
Empfänger | Wolff, Christian, 1679-1754 |
Ort | Basel |
Datum | 1716.04.08 |
Briefwechsel | Bernoulli, Johann I (1667-1748) |
Signatur | Basel UB, Handschriften. SIGN: L Ia 671, Nr.7 |
Fussnote | Das Manuskript isst von der Hand Daniel Bernoullis. Autographe Korrekturen und Zusätze von Johann I Bernoulli. Dem Brief ist ein Blatt beigebunden, das folgende Bemerkungen von der Hand Johann III Bernoullis trägt: "8 Apr. 1716 Epistola ex qua famosissima Epist. pro eminenti Mathematico originem traxit, Wolfio Editore initium hujusce est pag.4. vers. finem pag. ultima (30) est omissa in Impresso" |
Viro Celeberrimo atque Nobilissimo
Dn.o Christiano Wolfio
S. P. D.
Johannes Bernoulli
Litteras Tuas, Vir Nobilissime, jam X. 8bris anni superioris ad me datas vix demum ante sesquimensem accepi cum Tomo altero Operis Tui incomparabilis Elem. Mathem.[1] quo me munere egregio sane et pretioso mactare voluisti; refero pro eo gratias, quas possum maximas donec occasio se mihi praebeat animum gratum reipsa testandi; vocavi hoc opus "incomparabile" et merito quidem, nam id in hoc genere sine exemplo existit, sive respiciam absolutam ejus perfectionem utpote complectentis omnes et singulas matheseos partes imo et analyses nostras novas infinite parvorum quae in aliis cursibus Mathem. alto silentio praetereuntur; sive considerem ordinem, exactitudinem et elegantiam, quibus omnia pertractas, sive denique attendam ad integram totius operis concatenationem et concinnam dispositionem; profecto mihi omnia arrident: quare soleo discipulis meis, si completum cursum Math. habere velint commendare ut sibi comparent hunc a Te editum. Cum nuper studiosis quibusdam calculum differentialem et integralem explicarem, conferremque proin cum iis quae in primo Tui Operis Tomo[2] hac super re habes observavi paucos aliquos lapsus haud dubie festinando admissos, haud quidem graves, qui tamen Tyrones remorari queunt adeoque correctionem merentur.
De Lexico Tuo Mathematico[3] multum quoque mihi promitto siquidem eadem, qua Elementa reliquaque Tua scripta dexteritate elaboratum prodibit de quo nullus dubito. Exemplar ejus, quod promittis, ubi typis descriptum fuerit augebit novo additamento[4] debitorum meorum summam. Weidlerus suam dissertationem[5] de phosphoro meo Mercuriali[6] etiam mihi transmisit. Volebat ut videtur aliquid novi producendo nomen sibi comparare, in hunc finem sibi dissentiendum esse existimavit a mea explicatione, qua tamen, quod citra jactantiam dixerim, vix meliorem expectandam fore censeo, eo quod accurate adeo omnibus phaenomenis satisfacit: sed in Tua sum opinione Vir Cel. quod commenta puerilia nobis obtrudat Weidlerus loco judiciosae explicationis, quam ab eo expectabam, cum primum inspicerem titulum ejus dissertationis. Quid enim magis ridiculum quam dicere, lucem phosphori mercurialis esse lucem a sole derivandam et in tenebricosis locis superstitem, miror quod non dixerit radios solares a mercurio imbibi eumque ita lucidum reddi eum in modum quo idem contingit lapidi bononiensi[7]; sed tunc arduum ipsi fuisset explicare, cur Mercurius ab aëris contactu liberatus esse debeat, cur luceat jam diu absente sole, cur luceat etsi solis radiis sub Dio non fuerit expositus, cur lumen in Mercurio non pedetentim[8] evanescat, haec enim et alia multa secus observantur in Lapide Bononiensi calcinato. Est mihi adhuc exemplar phosphori mei mercurialis in phiala vitrea aëre evacuata inclusi, qui unus ex primis est quos jam ante 20 annos paravi, hic tamen quem perpetuo in arca quadam clausa asservo, ad quem adeo nihil lucis solaris pertingere potest, noctu tamen depromtus et agitatus tam vividam lucem fundit quam prima vice fecit ut tota lagenula igne plena appareat, quid hic contribuant radii solares in tenebris superstites et a superficie Mercurii tanquam a speculo caustico collecti, ut lepide sommiat Weidlerus, ego certe quae mea est mentis hebetudo assequi non possum praesertim cum quaelibet gutta Mercurii inter agitandum separata a reliquo sit lucida, etsi utique non habeat superficiem concavam, quae sit loco speculi concavi ad radios colligendos apti, qualem Weidlerus primario requirit, ad ostendendum quomodo lux in barometris generetur, asserens scilicet mercurium in tubo barometri agitando descendentem in summitate ex cavari in superficiem concavam quae more speculorum vitreorum[9] radios a sole remanentes et per tenebras dispersos congregare et ita visibiles reddere possit: risum teneatis amici!
Cookii Meteorologiam[10] non vidi, sed vereor ne pro regulis praedicendi tempestates ex syderum positu vel aspectu meras nugas venditet: quando autem existimat regulas suas per 20 annos ad amussim eventui respondisse, forsan ambiguitate regularum, qua fit ut hujusmodi regulas ad omnes eventus trahere liceat, delusus ipse et alios quoque deludere voluit.
Hermanni nostri Phoronomiam[11] etiam ego dono accepi: potuisset ut mihi quidem videtur materiam suam plerumque clarius et brevius pertractare quam fecit, si analysi nostra ordinaria infinite parvorum semper uti voluisset, sed apparet illum studio ab ea discedere voluisse ut posset Newtonum imitari synthetice procedentem in suis Princip. Phil. nat. Math.[12] quo factum ut quemadmodum ipse Newtonus saepiss[im]e[13] perobscuras, longas et intricatissimas demonstrationes pertexuerit, r[e]rum alias non adeo difficilium, si viam analyticam sequi voluisset, quo fine per salebras ire maluerit quam per viam planam, ego non capio, putat Ampl. Leibnitius Hermannum studuisse Anglis complacere, quod complacendi studium ipse non approbat, in suis ad me litteris dicit se nuper ex Anglia intellexisse, quod Keilius invito hoc Hermani genere scribendi jam stricturas parat in opus ipsius, quantumvis bona et elegantia multa illud contineat.
Doctor ille Medicinae Anglus quem Tibi Vir Celeberrime commendare sustinui, laudavit mihi, quam potuit maxime mirificam urbanitatem, qua a Te fuerit exceptus, quo circa et hoc nomine me Tibi obstrictum sentio.[14] Quando ille [15] asseveravit, quod inventio calculi integralis mihi sit tribuenda, fortassis nihil a veritate adeo alienum dixit, si praesertim hunc calculum a calculo differentiali, quem utique totum Leibnitio deberi etiam apud me extra controversiam est, distinguere velimus. Quod si Tu contendas calculum integralem esse tantum partem calculi differentialis, hoc quidem libenter largiar ne in logomachiam abeamus: nihil interim impedit quo minus hujus partis (quam etiam ego primus nomine integralis baptizavi) inventionem mihi arrogare liceat, quod Te non invito dixerim, modo attendere digneris ad gestorum seriem; reperies enim Ampl. Leibnitium, cui similem calculum quem summatorium vocat innotuisse non nego, nihil omnino ante me Fratremque meum in lucem edidisse unde colligi potuisset, quomodo regulae essent condendae pro integrandis quantitatibus differentialibus; adeo ut meo Marte eruendae mihi fuerint regulae (quarum non nullas in Tomo I Tui Operis exponis) ex quibus algorithmum concinnavi. Eas autem regulas a me excogitatas primo Fratri aperui, qui quod earum soliditatem non statim perciperet, initio aegre eas admittebat, veritus ne illarum usus in paralogismos deduceret, mox vero demonstrationum mearum vim sentiens adoptavit calculum hunc meum integralem et excoluit ipse: retentoque ipso nomine "integralis", quod ei indideram aliud commodius tunc nesciens publice usus est Frater et quidem prima vice (nihil enim antea hujus nominis usurpatum in ullo libro invenies) in Actis Lips. an. 1690, p. 218, lin. penult.[16] ubi ostendit, integrale quantitatis compositae irrationalis qualis per calculum hunc nunquam antea fuit integrata. Leibnitius hujus modi integrationem nusquam dederat, saltem non publice. Dedit quidem in Actis Lips. an. 1686, pag. 297 exemplum integrationis,[17] nempe ipsius sed quod ut ipse notat immediate adeo ex directo calculo differentiali fluit, ut nulla arte nedum analysi ad id opus fuerit. Dicitque porro quod seu ut ego voco integrale ipsius exhibeat arcum circuli, quod quidem ex nuda arcus differentiatione patet: sed hoc pariter pro methodo integrandi nihil confert.
Constat proin calculum integralem et rem et nomen a me habuisse siquidem in justas regulas eum redactum et ad algorithmum quendam revocatum primus tractare docui in forma analyseos:[18] specimen insigne ejus rei dedi per solutionem problematis catenarii, quod primo Fratri meo privatim proposueram; hic vero cum illud solvere non posset publice proposuit, ut liquet ex Actis Lips. 1691[19] ubi plura alia exempla per calculum integralem a nobis soluta conspiciuntur.
Quid mihi et quousque debeatur calculus integralis inventus et nunc passim usitatus, nec non et ipsius calculi differentialis promotio et propagatio loquuntur porro ea quae durante mea peregrinatione cum Eruditis in scripto communicavi; praesertim in Gallia, ubi prae caeteris Hospitalio liberalissime omnia nostra mysteria praesens ore et calamo, postea vero absens per litteras aperui et explicavi. Ex lectionibus meis[20] in usum ipsius conscriptis cum Parisiis commorarer ipsique traditis librum postea suum contexuit Gallicum de Analysi infinite parvorum[21] complectentem quidem tantum primam partem seu calculum differentialem: alteram vero seu calculum integralem postea traditurus erat nisi morte occupatus fuisset; habebat enim ex manuscriptis meis materiam ejus paratissimam.
Quod quidem non ignorant plures Mathematici, qui eorandem manuscriptorum meorum apographa sibi compararunt, inter quos et ipse noster Hermannus sicut et quidam alii Germani nonnullique Itali et Angli,[22] qui sub mea manuductione studia Mathematica prosequentes facultatem a me impetrarunt describendi primum illud apographum quod ipsemet prudenti consilio descripseram ab originali antequam nempe Hospitalio exhiberem, id quod feci ne me proprio meo foetu privarem.
Quin et Illustr. Leibnitius, qui quae narravi non ignorat dictorum veritati testimonium perhibere posset, et partim jam perhibuit, quippe qui non tantum in Litteris suis privatis tam ad me ipsum quam ad alios scriptis, sed et publice profitetur; calculum hunc "jam nobis ipsis non minus quam sibi deberi". Vid. act. Lips. 1697, p. 202.[23] Haec vero, quaeso Vir Celeb. ne eo animo dicta putes, quasi de meritissimis laudibus Leibnitii quicquam detractum velim, aut viro summo palmam dubiam reddere contendam, ut enim jam supra monui non aegre adducor ut credam Virum hunc habuisse suum calculum summatorium in eadem perfectione, eodem tempore et forte citius quam mihi inventus esset calculus integralis, quid enim hujus Viri sagacitas penetrare non posset? Nihil itaque aliud evincere volui, quam quod ex propria mea industria calculum integralem seu differentialem inversum excogitaverim, ansam quidem praebente calculo directo, et quod ante me Fratremque meum nemo quicquam in lucem ediderit pro integrandis quantitatibus compositis et irrationalibus, quando interim Nos varia ejus specimina primi exhibuimus: ut ita non videam cur inter inventores non aeque poni merear, quam qui diu ante Nos quoque possedisset nihil tamen evulgasset. Quod interim ad calculum differentialem proprie sic dictum attinet, ejus quidem inventionem in solidum semper attribui Leibnitio et, quicquid dixerint Angli, etiamnum attribuo. Quare ne modestiae limites transgrederemur, nihil gloriae hactenus proponimus, nullamque inde lauream nobis arrogavimus; tametsi non tam paucis istis pagellis, in quibus calculum differentialem tanquam per aenigmatis nebulam conspiciendum proposuit Leibnitius, in Act. Lips. 1684[24] calculus iste celebritatem acquisiverit, imo non tam ab Eruditis intelligi coeperit ex illo schediasmate nedum inclarescere, quam ex nostris frequentibus aenigmatis illius explicationibus et commentationibus atque ex variis in eam rem et copiosis exhibitis speciminibus itemque ex meis apud Exteros Geometras in itinere habitis conversationibus, sine quibus omnibus nescio annon calculus iste in pagellis illis sepultus etiam num delitescet inglorius. Cum enim per 4 fere annos inibi latuisset a nemine perceptus antequam eum in lucem protraheremus, potuisset haud dubie diutius conquiescere sine strepitu et forsitan tunc nunquam Anglorum aemulatio proritata fuisset.
Ex quibus ergo porro liquet quid tenendum sit de lite illa inter Anglos Germanosque nostros exorta et quae jam ab aliquot annis viget, utrum scilicet Newtonus[25] an Leibnitius pro primo Inventore hujus calculi sit habendus. Quaestio haud absimilis videtur ei, qua quaereretur, utrum hic vel ille primum lapidem jecerit praeclari alicujus aedificii, quinam vero fuerint illi, qui aedificium ipsum ad fastigium suum vel saltem aliquousque evexerint, nemo esset qui quaereret. Quasi nempe illi qui rem quandam ab incunabulis inceptam longe promovent nihil laudis, illi alii autem qui prima ejus stamina posuere soli omnem honoris mercedem meruissent. Ut jam nihil dicam, quod rixantes nihil pensi habeant, cui sint attribuenda tot alia inventa quae sane nuda methodo sive differentialium sive fluxionum nullo modo nituntur. Ex innumeris quae silentio praetereo, sit calculus exponentialis, per quem quantitates ad dimensiones indeterminatas differentiare, curvasque ejusdem nominis tractare primus ego docui,[26] quod Tu ipsemet Vir Cl. in Litteris Tuis pro ea qua es aequitate agnoscere videris.
Plura dicturus eram quia ut mihi videtur non satis cognitam habes historiam Calculi infinitesimalis inde ab infantia ad virilem suam aetatem provecti, poteram praesertim producere atque monstrare Tibi Vir Cl. excerpta quarundam epistolarum jam olim me inter et Geometras quosdam commutatarum quae dictis his fidem conciliassent. Sed ne in molem nimiam excrescant hae litterae, confisusque causae meae apud Te Judicem aequissimum fidem habiturae, reliquum quod superest spatium temporis cujus angustia in praesentiarum ob negotiorum multitudinem vehementer premor impendam amoliendis a me frivolis accusationibus et impactionibus quibus me oneravit Keilius Vir ut nosti qui se pro Newtono crucifigi pateretur; et cui indifferens est omnia quae ab Idolo suo proveniunt tam mala quam bona acerrime propugnare.
Iste igitur Keilius in responsione sua (quam potius invectivam dixeris contra Leibnitium) inserta diario Gallico Litterario Hagiensi mens. Jul. et Augusti pag. 320,[27] qui menses non nisi nuper demum ad me pervenere; Keilius, inquam, arrepta occasione praeter omnem necessitatem me quoque perstringit variaque mihi imputat, ad quae me reponere oportet sequentia nihil interim dicturum de lite ipsa quam acerbissimis verbis movere pergit Illustr. Leibnitio, qui sine dubio causam suam ipse defendet in apologia sua quam una cum commercio Epistolico[28] alteri illi Anglico opponendo nobis promittit. In scripto illo volante quod sub forma Epistolae,[29] Tua ni fallor opera, typis mandatum in lucem prodiit 29. Julij 1713 asseritur pag. 3 Newtonus rationem veram capiendi fluxiones fluxionum vel rectam methodum differentiandi differentialia nondum cognitam habuisse cum scriberet sua Princip. Phil. Math.[30] additurque per parenthesin hoc "ab eminente quodam Mathematico dudum notatum esse"; jam vero Keilius conjectat quod per hunc Mathematicum ego sim intelligendus idque ex eo quod in Act. Lips. 1713, m. febr. pag. 93 et 94[31] Newtono imputaverim dedisse modum vitiosum differentiandi differentialia per seriem quandam cujus termini tertius, quartus, quintus etc. ab ipso sumti sint perperam pro differentiali secundo, tertio, quarto etc. Hinc ergo Keilius ansam capit suum in me stringendi calamum, quo vero jure et quo successu nunc patebit.
Observabam olim errorem quem Newtonus commisit in Princip. Phil. Math. edit. prim. p. 265,[32] et quibusdam aliis in locis ubi nempe aggressus est determinare rationem gravitatis ad resistentiam in corporibus datam lineam describentibus, quam proportionem a Newtono traditam cum deprehendissem erroneam et a mea diversam, ejus mentionem feci in meo schediasmate quod de hac materia aliisque huc spectantibus publicabam in Act. Lips. 1713, mens. febr. et mart.[33], nec aliter poteram quam monere Lectorem meum lapsus Newtoniani, ne si ipse animadversurus fuisset discrepantiam inter Newtoni regulam et meam, ille Viri summi Auctoritate motus, vitium in mea regula latere, praecipitanter judicaret; interim monui de errore omni qua potui civilitate et velut in transitu, adeo ut mirer Keilium dicere ausum quod "hoc schediasma in actis publicaverim eum tantum in finem ut hunc errorem Newtoni propalarem et toti mundo patefacerem" vid. Diarium litterarium Hag. m. Jul. et August. pag. 345[34], quasi nempe nihil aliud in eo egissem quam errores alterius sectari, quod quam falsum sit judicent illi, qui me noverunt ab hoc more criticum agendi alienissimum, et qui in illo meo specimine multa nova invenerunt et laudarunt. Sufficiebat equidem errorem Newtoni animadvertisse ex eo solo quod ipsius regula abluderet a mea quam certissimam esse demonstrative sciebam, ipseque Newtonus postea agnovit: poteram itaque nuda erroris detectione acquiescere eumque in Actis simpliciter commemorare sed Agnatus meus, cui Newtoni lapsum indicaveram curiosus ex quo fonte originem traxisset, examinavit totam solutionem, Propos. X, quae in prima editione pag. 260 Princip. Phil.[35] extat, retulitque paulo post, sibi videri fontem erroris consistere in non recto usu seriei quam Newtonus ibidem pag. 263 adhibet pro sumendis differentiis ulteriorum graduum,[36] cujus nempe seriei, quae per evolutionem vel extractionem radicis applicatam curvae exprimentis emergit, terminus tertius ex mente Newtoni exhibeat differentiam applicatae secundam terminus quartus differentiam ejusdem tertiam et ita deinceps; deceptus namque videbatur Newtonus successu duorum primorum terminorum, dum forte putavit quemadmodum primus seriei terminus exponit applicatam ipsam seu ejus differentiam nullanam et secundus seriei terminus dat applicatae differentiam primam, falsa jam inductione conclusit ita tertium seriei terminum dare differentiam secundam, quartum terminum differentiam tertiam et ita porro.
Haec cum vidissem probabilitate minime carere, nullam habebam rationem dubitandi, quin in hoc ipso cespitaverit Newtonus, in qua opinione eo magis confirmabar videns postea, Newtonum alio in loco aperte eandem hanc sententiam falsam fovisse de sumendis terminis seriei pro differentiis differentiarum. Inspice modo si lubet ejus tractatum de quadratura curvarum,[37] invenies ab initio scholii quod in Fine subnectitur[38] haec verba "Quantitatum fluentium, inquit, Fluxiones esse primas, secundas, tertias, quartas, aliasque diximus supra. Hae fluxiones sunt ut termini serierum infinitarum convergentium. Ut si sit quantitas fluens et fluendo evadat , deinde resolvatur in seriem convergentem etc. terminus primus hujus seriei erit quantitas illa fluens, secundus erit ejus incrementum primum seu differentia prima cui[39] nascenti proportionalis est ejus fluxio prima, tertius erit ejus incrementum secundum seu differentia secunda cui nascenti proportionalis est ejus Fluxio secunda; quartus erit ejus incrementum tertium seu differentia tertia cui nascenti Fluxio tertia proportionalis [est] et sic deinceps in infinitum." [40] Ergo disertis verbis Newtonus affirmat terminum tertium esse incrementum secundum seu differentiam secundam et terminum quartum esse incrementum tertium seu differentiam tertiam; interim vera differentiandi methodus, quam nunc Newtoniani admittunt, docet, quod illius seriei terminus tertius sit tantum subduplum incrementi secundi seu differentiae secundae et quartus terminus tantum subsextuplum incrementi tertii seu differentiae tertiae. Sciendum autem tres quatuorve jam diversas editiones hujus tractatus de quadraturis in lucem prodiisse, in quibus omnibus hic locus citatus iisdem verbis et sine ulla mutatione expressus conspicitur, adeo ut nec Newtonus ipse sub cujus auspiciis et revisione iteratae hae impressiones prodierunt, nec ullus alius ex ejus Promachis tam perspicax fuerit qui ibi latentem invenisset errorem typographicum.
Sed audi Vir Nobilissime quid postea factum, scilicet Agnatus meus ante aliquot annos ut nosti apud Anglos agens monstravit Newtono hunc locum pro argumento valiturum quod error ipsius circa rationem resistentiae ad gravitatem commissus ex eo ortus fuerit, quod terminos suae seriei convergentis pag. 263[41] pro differentiis ulterioribus et speciatim terminum tertium pro differentia secunda applicatae perperam sumsisset, hujus argumenti vis cum facile eludi non posset, surgit nunc Keilius qui lynceus satis est ut in verbis Newtonianis ex tractatu de quadraturis citatis primus perspiciat vel somniet potius a Typotheta fuisse erratum; itaque in omnes se vertit partes torquetque se ceu mus in pice ut Lectori probet lapsum hunc facillime committi potuisse a typotheta, etsi qui factum sit quod error toties recusus, non fuerit animadversus, excusare non curet.
Interim videamus paulo propius qua arte Keilius incrustare conetur commentum suum de vitio typographico, et qua correctione eidem mederi se speret. Pag. 347 et 348 Diar. Litter.[42] ita magistraliter intonat Keilius: "Dans la lettre", inquit, "que j'ecrivis pour reponse à Mr. Leibnitsz, laquelle est imprimée dans le Commercium[43], je fis voir que les termes de la suite convergeante ont toujours une certaine proportion aux differences correspondantes; et par consequent que ces termes avec le coëfficient sous entendu pour les rendre infiniment petits peuvent designer tres justement les differences des quantités, quand il ne s'agit que de considerer des proportions. Mr. Newton a aussi fait voir la meme chose, à la fin de son traité des quadratures, mais il s'y est glissé une erreur dans l'imprimé, le mot 'ut' ayant été mis d'abord et ensuite oublié." Ergo si Keilio credimus culpa est typographi,[44] qui particulam "ut" omisit, id vero credat Judaeus Apella non Ego[45]; fictio enim est tam crassa tamque palpabilis, ut etiam imperitioribus vix illudere possit. Nescio sane annon longe malius honori summi Newtoni consuluisset si hic "scapham" "scapham" vocasset confitendo rotunde Newtonum ipsum aliquid humani passum et per inadvertentiam lapsum esse, quam quod ridicula adeo et ab omni verisimilitudine aliena excusatione culpam in Typographum rejicere voluerit.
Quod enim haec excusatio ne umbram quidem verisimilitudinis habeat, et vel hinc colligere est quia particula illa "ut" non semel tantum omissa esse debuisset, secundo quod maxime arguit effictam excusationem, quia in iteratis editionibus omissio illa iterata subterfugere debuisset correctoris forteque ipsius Newtoni revidentis curam, hoc num probabile sit judicent alii.
Sed et ridicula est excusatio talisque videbitur quicunque eam attente conferet cum verbis ipsis Newtonianis, nam si eam ad mentem excusationis corrigere velimus sensum fundent prorsus puerilem et tanto viro indignum adeo ut insertio particulae "ut" magis deformet quam emendet, potiusque infarciat inutile quam suppleat defectum; imo forte a falso in falsius dejicere potest Lectorem talis infarctio, quid enim si legendum esset "tertius terminus erit 'ut' ejus incrementum secundum et quartus terminus erit "ut" incrementum tertium.", quid, inquam, an non Lector putaret, per particulam "ut" eandem utrobique proportionem indigitari? hoc quippe sensus naturalis requirit, quasi nempe Newtonus innuere voluisset tertium terminum esse ad incrementum secundum sicut est quartus terminus ad incrementum tertium, id quod est falsissimum; ita ut minime probabile sit Newtonum qui alioquin accuratus adeo est in expressionibus suis voluisse Lectorem suum in ambiguitate relinquere et quidem tunc cum clarissime et maxime determinate loqui potuisset et debuisset dicendo tantum "tertius terminus erit subduplum incrementi secundi et quartus terminus erit subsextuplum incrementi tertii"; id quod postea Keilius ipse (perspiciens interim veram nostram differentiandi differentialia rationem) probe observavit dum in Commercio Epistolico pag. 115[46] ab initio agens de eadem materia non contentus dicere terminos illos tertium et quartum esse "ut" incrementa secundum et tertium, sed meliora edoctus diserte monet priorem ex illis terminis esse dimidium incrementi secundi, et alterum esse sextantem incrementi tertii. Sed piget plura dicere de conficta ista Keilii excusatione, cum quam detorta, quam coacta sit nemo non videat. Hoc unum adhuc addere liceat, Keilium nimirum nimis quantum suffenum esse[47] ut credat se solum sapere seque rem habere cum talpis quibus cum coecutiant quidlibet pro quolibet obtrudi potest, ut enim commentum suum de omissione patticulae "ut" plausibilius reddat, pilulam istam inaurat his verbis, "le mot 'ut' ayant été mis d'abord et ensuite oublié",[48] quasi dicere vellet, particula ista de qua hic agitur cum initio apposita sit, nemo non videt illam postea omissam esse per incuriam Typothetae, sed parum emunctae naris oportet esse, cui dolus iste non suboleat, ubi enim illud "ut" Newtonus expressit nempe in his verbis "Hae fluxiones sunt ut termini serierum infinitarum convergentium",[49] alio omnino respexit, nullamque per consequens affinitatem habet illud "ut" hoc loco expressum, cum altero quod Keilius intrudere cupit in sequentibus lineis. Legenti namque facile patet, Newtonum hic per fluxiones intelligere non ipsas differentias nascentes, sed tantum velocitates quibus nascuntur, quod utique sequitur ex verbis hisce "differentia prima cui nascenti proportionalis est Fluxio prima etc." adeo ut mirum non sit Newtonum hic dixisse "Fluxiones sunt ut termini" quia dicere non poterat "velocitates sunt lineae" sed "velocitates sunt ut lineae". Tantum igitur abest ex eo quod illud "ut" initio positum sit concludi posse, Newtonum idem illud in sequentibus quoque in manuscripto suo aut saltem in mente habuisse, ut potius contrarium sequatur, nam ex eo ipso quod putavit differentias exprimi per terminos seriei convergentis, differentiis vero ipsis cum sint proportionales Fluxiones, naturali deductione licet ex falso principio collegit "Fluxiones esse ut terminos serierum". Facessat ergo tandem Keilius cum misero suo incrustamento.
Pergo nunc ad alterum argumentum speciosius revera sed nihilo magis solidum, quo Keilius probare nititur Newtono tunc cum Princip. Phil. Math.[50] scriberet jam innotuisse veram methodum differentiandi differentialia. Dixeram cum Agnato meo[51] errorem Newtoni circa determinationem resistentiae ad gravitatem ex eo venisse, quod Newtonus in Princip. pag. 263[52] in serie quae exprimit terminum quemlibet sumat pro aliqua ejus differentiali tanti gradus quantae dimensionis existit littera in ipso termino; quod assertum nostrum confirmari ostendimus per id quod supra ex tractatu de quadraturis excerpsimus: unde factum ut quemadmodum ibi sumitur pro differentia prima ipsius et recte quidem, ita quoque secundum terminum pro secunda differentia et tertium pro tertia differentia sumi debere falso putaret. Nunc vero Keilius probaturus vid. Diarium Littera. pag. 344[53] Newtonum sumsisse differentiam secundam aequalem ipsi non vere aequalem ipsi , demonstrationem aliquam adornat, qua evincitur differentiam secundam esse , citatque Princip. pag. 264 ubi Newtonus recte ponit aequalem duplo termini tertii hoc est ipsi ; Sed nihil hoc juvat Keilium, nisi simul probet Newtonum jam tum temporis cum Principia sua scriberet scivisse vel animadvertisse quod sit secunda differentia ipsius , siquidem ex hactenus dictis satis superque constet, illum sumsisse pro duplo differentiae secundae, quare quilibet videt hoc alterum argumentum Keilianum esse puram putam petitionem principii.
Haec ni fallor jam sufficere possunt ad probandum nos sonticam gravissimamque habuisse causam referendi originem erroris Newtoni ad perversum quem fecit usum serierum convergentium. Caeterum vero si perrexerit Keilius aliter interpretari mentem Newtoni, quam ipsius verba diserta volunt per me licebit; sed quia non tenebar divinare mentem male expressam sive Newtoni ipsius sive Typographi culpa, non video quo jure Keilius audeat pag. 345, Diar. litt.[54] me postulare erroris ex culpa alterius enati eumque vocare errorem enormem et "generis omnino extraordinarii".
Verum si dicendum quod res est, ex eo mihi crimen facit Keilius, quod viderim detexerimque errorem Newtoni de male determinata resistentia, deprehendi aliquid sinistri in Viro quem tanquam idolum adorat quemque infallibilem putat, debebam venerabundus dissimulare et silentio premere, hoc autem miser ego non feci, hinc illae lachrymae![55] en scelus meum! "cur aliquid vidi?[56] cur lumina conscia feci?"[57]
Quis ergo miretur si tanti sceleris reus condemner ibid. a Keilio ad deprecationem publicam delicti; et ad confessionem erroris quem alius commisit nec interim ausit quispiam sciscitari, cur mihi non tribuat justitiam Newtonus, qui ab Agnato meo in Anglia degente erroris a me detecti commonitus, in nova operis sui editione[58] eum postea correxit, nulla interim facta mentione nec mei nec monitoris; sed hoc nihil novi est in quibusdam Anglis qui sibi solis licere putant aliorum inventa tanquam sua impune usurpare, quando ipsi Hominesque Deosque invocant, ubi vident vel saltem videre arbitrantur extraneos in suorum inventa manus inferre. Exempla sunt quorundam ut Cheynaei, Des hayes, Tailori, aliorumque qui passim inventis meis sunt usi alienisque vel nulla prorsus facta mentione Auctoris, vel eum in praefatione tantum ambigue nominantes, ita ut quid proprie ad ipsum pertineat ex ipso contextu non appareat. Id quod inprimis observare est in Deshayes, qui certe maximam sui libri[59] partem ex nostris compilavit, quae fere de verbo ad verbum in vernaculam suam linguam transtulit, unde vero ea descripserit, altum servat silentium, nisi quando Newtoniana refert, tunc enim Inventoris nomen frequentissime occurrit.
Propero ad alia: audet Keilius in Diar. Litter. p. 346[60] insinuare me de seriebus convergentibus dixisse quod sint erroneae, ego vero hoc nego et pernego, scio enim has series esse veras et exhibere id quod exhibere debent, nempe valorem quantitatis irrationalis in seriem expansae: sed id dixi quod etiamnum dico, incautum scil. abusu earum serierum facile in errorem abduci posse, ut certe ipsi Newtono contigisse adhuc dum credimus. De coetero non videmus, quid istis seriebus opus nunc sit, postquam calculus integralis noster una cum differentiali invaluit, per quem brevius, tutius, commodius et jucundius consequimur quicquid per series illas obtinetur et multo plura. Deinde non capio quid moverit Keilium ad sibi persuadendum me non bene intellexisse, ut ibid. ait, doctrinam serierum convergentium cum tamen in hac materia serierum cujuscunque generis ego, si quisquam alius, magnam olim temporis mei partem triverim, ut colligere est ex illis quae passim hac de re publicavi.[61] Imo et ipsissimam seriem per extractionem radicis continuatam more Newtoni inventam, ego proprio Marte antequam id a Newtono praestitum scirem, per methodum aliam et a Newtoniana diversissimam erui[62] et jam tum communicavi cum Illustr. Hospitalio,[63] cum vix Geometriam sublimiorem delibare per unum alterumve annum incepissem.
Sed revertar venia Tua Vir Celeb. ad considerationem resistentiae determinandae corporum curvas datas describentium,[64] ubi vidimus halluzinatum esse Newtonum; qui ergo monitus, ut in altera Edit. Princip. Phil.[65] suum errorem corrigeret, substituit chartis dissectis (locum enim illum ubi error extabat typi jam superaverant, cum se errasse rescisceret) aliquot folia in quae conjecerat novum canonem pro invenienda relatione resistentiae ad gravitatem.[66] Ut igitur videat Keilius me veritatem venerari quomodo et quandocunque se mihi offert, meque paratum esse unicuique suum tribuere, candide et ingenue confiteor, quod novus iste Canon Newtoni, sit verus, bonus et elegans, an autem tantae sit praecisionis et tam extraordinariae elegantiae, ceu Keilius pro more suo exaggerat, ut ideo alter ille quem ego dederam in Act. Lips. 1713, p. 121[67] ei praeferri non mereatur, judicet peritus lector, qui legerit utrumque ac tum observaverit, quod is quem Newtonus dedit porrigatur duntaxat ad casus particulares, ubi nimirum gravitas supponitur uniformis et non nisi secundum directiones ad horizontem perpendiculares; quod autem Canon quem ego exhibeo loco citato sit multo et clarior et universalior ut pote sese extendens ad gravitatem non solum uniformem sed quacunque lege variabilem, et non tantum ad Horizontem perpendiculariter, sed ad quodcunque punctum datum tendentem.
Testem produco nostrum Hermannum, qui in suis ad me Litteris d. 14. Jan. 1715 haec habet, "Caeterum", inquit, "substituta (a Newtono) erroneae methodus inveniendi densitatem medii ut mobile datam curvam in hoc medio resistente describere possit, etsi bona videtur nulla tamen ratione cum tua idem multoque plura praestante comparari meretur, quod quidem Newtonus ipse fateri quodammodo videtur, quod colligo ex illis quae Cl. Varignonius in postremis suis mihi scribit 'Mr. Moivre me mande aussi que Mr. Newton est charmé de la solution que Mr. Bernoulli l'Oncle a donné de son probleme.'."[68] Quod Hermannus a Varignonio sibi scriptum refert, hic idem quoque mihi scripsit:[69] imo et Cl. Moivreus egregius sane Geometra apud Anglos judicium Newtoni de mea solutione mecum communicans his utitur verbis in Litteris suis ad me ipsum exaratis d. 28. Jun. 1714. "J'ai vû," inquit, "Mr. Newton qui m'a dit, qu'il avoit lû avec beaucoup de plaisir vôtre methode de resoudre le probleme de la resistance, il Vous rend justice, en homme, qui n'est nullement offensé, il dit qu'elle est admirablement belle et meme qu'elle est commode pour des expressions finies."[70] Ex quibus fere colligere licet, Keilium partes Newtoni tueri ultra quam Newtono gratum est, et non ex veritatis amore, sed ex praepostero in Gentem suam studio; an autem deceat Virum cordatum omnia sive bona sive mala mordicus defendere ideo tantum, quia ad populares suos spectant, de eo judicent saniores. Keilius qui minaciter adeo insultat, non dico mihi sed Viris de re Mathematica longe meritissimis, deberet ipse prius sua ostendere inventa quibus Divinam hanc scientiam locupletaverit, quam se de aliorum inventis in judicem erigere sustineat: sed nihil hactenus ab eo videre mihi contigit, quam quod ex aliis et quidem ex ipso Newtono exscripsit et saepe quidem suppressis Auctorum nominibus compilavit, scilicet ipsi licent, quae in aliis tam indignabundus carpere conatur. Caeterum nescio an a suis laudem quam forte expectabit sit reportaturus, eo quod Newtonum Virum sane magnum sed hominem tamen supra humanam sortem evehere conetur, quasi errare, quod humanum est ab eo alienum esset, aut sicubi erraverit id a nobis notari nefas esset et profanum: quo immodico placendi studio vereor ne se suspectae fidei reddat Keilius apud modestiores Anglos, tunc quoque cum in Newtonum justissima et meritissima congerit encomia, quando scil. vident illum ad omnia defendenda aeque paratum et promtum existere tanquam ex tripode dicta sciat enim velim praeter illum jam notatum errorem de proportione resistentiae ad gravitatem male determinata forte et alios monstrari posse in Princip. Math. qui emendari mererentur quosque si tanto ut putat Keilius, carpendi pruritu laborarem quin propalassem nihil impedivisset. Liceat hic exempli loco commemorare eum, cujus jam meminit Hermannus noster in Phoronomia sua nuper edita pag. 394[71] ubi optime notat Newtonum paralogizantem in princip. Math. pag. 330[72] primae edit. quando demonstrare conatur, "aquam ea cum velocitate erumpere ex vasis, qua motu suo in altum converso ad dimidiam altitudinem aquae supra foramen evehi possit",[73] quam autem propositionem (cujus falsitatem ipsa quoque experientia refellit) in altera edit. omisit, sed nullam aliam substituit pro vera velocitate aquae erumpentis demonstranda, quae tanta est praecise quantam acquireret corpus grave casu accelerato ex altitudine aquae supra foramen: cujus rei veritatem ab aliis sine demonstratione assumtam, ego primus apodictice demonstravi; meamque demonstrationem ante quatuor circiter annos Cl. Hermanno ex Italia reduci et hac transeunti Francofurtum exposui, cujus vero postea oblitus existimavit se primum esse demonstratorem principii illius hydraulici vid. phoron. pag. 393.[74] Sed cum nuper ei per litteras refricuissem memoriam,[75] meamque demonstrationem de novo exposuissem, recordatus est, verum esse quod dixi promisitque hoc publice agnoscere et simul demonstrationem illam meam in lucem edere.[76] Interim non est cur credat Keilius, alterum hunc errorem Newtoni eo nunc fine adduci, ut ejus existimationem elevare velim, eum enim cum aliis quibusdam a me observatis diu dissimulavi, nec a me in apricum foret prolatus nisi hoc ante me fecisset Cl. Hermannus. Si aeque Te lassum fore scirem legendo ac ego sum scribendo, deberem Vir Nobiliss. Te dimittere ac patientiae Tuae rationem habere. Sed patere ut paucis adhuc reprimam insultus Keilii, quibus aggressus est solutionem meam problematis inversi virium centralium publicatam in Commentariis Acad. Reg. Scient. Paris. anni 1710, pag. 521,[77] Edit. Paris. usque adeo enim me persequitur ut nusquam et ne post altare quidem tutus sim, tanta scil. est profanatio tamque inexpiabile crimen aliquid contra Newtonum tanquam sacratissimum caput mussitasse. Experior profecto verissimam esse descriptionem Keilii aliunde transmissam veluti Athletae ardentissimi, "Ce Mr. Keil est un ardent Champion" quod ex Anglia ipsa perscribitur: ejus modi Heroum exercitu totum orbem Mathematicorum sibi subjugaret Newtonus, modo suppeterent arma ab ipso subministranda,
quibus illi militare possent: sed pergo.
Nova itaque illa aggressio Keiliana extat in Transact. Londin. mens. septembr. 1714, num. 340, sed demum publicata anno superiori 1715.[78] Scriptum ipsum, quod ad me non pervenit, non vidi, sed quantum video, ex eo quod inde excerptum mihique transmissum est,[79] nullius quidem erroris me arguit Keilius, quo valde gaudeo, sed tota ejus accusatio ad haec tria redit capita. 1.o Quod Lemma more meo demonstratum pag. 524 in Comm. Acad. Scient.[80] ita sonans, "si corpus, cogente vi quacunque centripeta, moveatur utcunque, et corpus aliud recta ascendat vel descendat, sintque eorum velocitates in aliquo aequalium altitudinum casu aequales, velocitates eorum in omnibus altitudinibus erunt aequales." Quod, nempe hoc lemma[81] nihil aliud sit quam ipsa Newtoni Propos. XL, Princip. Math. p. 125, Edit. primae[82] et demonstrationem ejus ab ipso traditam esse simpliciorem quam meam. 2.o Quod male egerim quando Newtono imputavi Eum supponere sine demonstratione, curvas a tali vi descriptas esse sectiones conicas, nempe vi centripeta existente reciproce proportionali quadrato distantiae. Item quod in me retorqueri possit me etiam non possedisse demonstrationes plurium propositionum, quas indemonstratas passim publicaverim. 3.o Quod mea demonstratio hujus propositionis inversae sit admodum intricata; quod vero in nova Principiorum Editione[83] facilior multo et magis clara licet tribus verbis extet demonstratio quam mea sit. Ad quae reposui in hunc fere modum. 1.o Lemma meum idem esse cum Propos. XL Newtoni non dissimulavi; sed contra aperte dixi pag. 524, Comment. Paris.[84] hujus lemmatis demonstrationem reperiri in Newtoni Princip. Math. Phil. Nat. pag. 125,[85] adeo ut huic Viro suum tribuerim, quid ergo hac in parte reprehendat Keilius et quo jure, non capio. Sed decretorie pronunciare, ut Keilius facit, Newtoni[an]am demonstrationem mea esse simpliciorem, non est de officio Keilii partium studio nimis dediti: neque eum pro judice idoneo agnosco; relinquo judicium aliis qui nondum jurarunt in vexillum Newtoni. 2.o Inepte ageret qui vellet causari me demonstrationes non possedisse plurium propositionum a me publicatarum sine demonstrationibus; quis enim inveniet et publicabit aliquam veritatem, cujus demonstrationem non habeat? nisi id fiat forte per inspirationem vel revelationem supernaturalem: tale quid autem in rebus Mathematicis de me vel de aliis cogitare vel suspicari ridiculum esset; sed multo magis ridiculum est, quod Keilius tam disparem retorsionem faciat, quae ne γρυ quidem similitudinis habet cum eo quod in Newtono modeste reprehendi, nam quod probe notandum nec postea secus interpretandum, minime reprehendi id quod statuerit Newtonus propositionem inversam virium centralium quae quadratis distantiarum a centro reciproce proportionantur, neque quod nullam hujus propositionis inversae demonstrationem dederit. Poterat quippe simpliciter hoc affirmare et asserere se habere demonstrationem propositionis hujus inversae, qua nempe solas sectiones conicas satisfacere probatur, tantum certe tribuissem candori Newtoni, ut ipsius verbis sine ullo scrupulo fidem habiturus fuissem. Attendat igitur Keilius quid sit illud quod fuerit improbatum, certe non ipsa assertio Newtoni, sed forma assertionis, dum ex demonstratione propositionis directae colligendam esse contendit eadem opera propositionem inversam, "Ex tribus", inquit pag. 55, Princip. Edit. primae,[86] "novissimis Propositionibus consequens est etc.". Quid, quaeso, sibi vult το "consequens est"? an non idem est ac si dixisset ex propositionibus istis directis "ultro fluunt inversae"? Porro pag. 49[87] contra regulam bonae conversionis colligit et concludit sine demonstratione his verbis, "unde vicissim, si vis sit ut distantia etc.". Quod si hoc non in forma conclusionis protulisset, sed simpliciter asseverasset sibi aliunde constare de veritate illius conversae, hoc sane ut jam dixi nemo improbasset; at vero hoc improbandum est quod velit posterioris veritatem ex prioris demonstratione sponte fluere patescere, sequi et colligi posse, utpote quod non majori jure ex eo concluditur, quam si quis vellet ex affectione qua gaudet spiralis logarithmica, qua nempe fit ut ad illam describendam requiratur vis centripeta cubis distantiarum reciproce proportionalem, protinus concludere dicendo, "unde vicissim si vis sit reciproce ut cubus distantiae, movebitur corpus in spirali Logarithmica", nam nulla foret necessitas sequelae, quia eadem lege virium existente moveri posset in spirali hyperbolica aliorumve generum curvis, ceu jam notum est. 3.o Quod Keilius demonstrationem meam vel potius analysin ex qua patet veritas inversi, nempe solas sectiones conicas describi posse per vim centripetam quadratis distantiarum reciproce proportionalem, intricatam et perplexam causetur nihil me movere debet, qui scio homini praejudiciis occupato et in fidem alterius mancipato sui juris non amplius existenti omnia displicere sive pulchra sint sive non, modo sciat non provenire ab eo cui se addixit. Audiamus potius judicium aliorum qui harum rerum sunt intelligentissimi et a partium studio longe remoti; inter eos nequaquam postremus est Celeb. Varignonius, Vir profundae eruditionis et in Geometricis acutissimi ingenii, ille in Comment. Paris. an. 1710, pag. 533[88] analysin istam qua sectiones conicas eruo ex supposita vi centripeta reciproce proportionali quadratis distantiarum, quamque Keilius tanquam intricatam nihili faciendam putat, his verbis nimium mihi honorificis extollit, "L'ecrit", inquit, "que je viens de lire de ... Bernoulli renferme deux solutions de la seconde de ces deux questions et une de la premiere dans lesquelles solutions paroit la sagacité ordinaire, surtout dans la maniere dont il deduit de la premiere de ces deux-là, que dans l'hypothese des forces centrales en raison reciproque des quarrés des distances du mobile à leur centre ou foyer, ce mobile doit toujours decrire quelque section conique".[89] Neque minus luculentum[90] est testimonium quod eidem analysi tribuit in fine sui scripti pag. 543[91] et quidem his verbis "Il est encore à remarquer que les quadratures supposées dans la construction generale, la rendent beaucoup plus facile que les constructions particulieres, pour lesquelles il faut trouver ces quadratures, ou les eviter quand les courbes sont Algebriques, comme... Bernoulli a fait dans le cas ordinaire des temps en raison des aires centrales et des forces en raison reciproque des quarrés des distances du mobile au centre de ces forces: la construction qu'il vient de donner de la courbe requise en ce cas et la maniere dont il fait voir que cette courbe doit toujours être une section conique, sont d'une sagacité et d'une adresse qui repondent à ce qu'il en paroit dans tout ce qu'il a donné jusqu'ici au public."
Sic igitur Varignonius longe melius vim percepit meae demonstrationis quam Keilius percipere voluit, nimirum percepit, quod aliquid altius quam nuda demonstratio nominari mereatur, et quod sit potius via analytica qua a priori penetrari potest ad cognitionem omnium curvarum satisfacientium hypothesi virium reciproce proportionalium quadratis distantiarum: an vero cum tali methodo in comparationem venire possit Demonstratio illa Newtoniana, tribus ut inquit Keilius verbis extans in nova Princip. Edit.[92] aut an inde concludi possit Newtonum reapse habuisse methodum analyticam inveniendi omnes possibiles curvas quae datae Virium hypothesi conveniant, nec meum nec Keilii est judicare, sed judicent alii, quorum non interest huic illive favere et qui nil nisi veritatem sectantur. Judicent quoque de insipida illius exagitatione qua prosequitur formulam meam , ideo tantum quia identitatem quandem deprehendit cum expressione Newtoniana propos. 41 quando inficete jocatur "meam non magis a Newtoniana discrepare quam verba latinis litteris expressa differunt ab iisdem verbis scriptis in graecis caracteribus".[93] Judicent, inquam, annon vel sola diversitas quae maxima est inter utriusque notandi rationem satis superque indicet, me ne cogitasse quidem de instituenda comparatione inter utramque formulam. Examinent etiam considerentque quam brevi via quamque diversa a Newtoniana incesserim, dicantque postea an alius quispiam praeter Keilium sibi persuadere possit, meam formulam esse ex Newtoniana desumtam; hoc interim non temere dico, quod si nempe Keilius non firmiora habet argumenta, quibus probet Leibnitium calculum suum mutuatum esse a Newtono, nobis fas erit credere, chimaeram esse quicquid argumentorum loco nobis obtrudere voluit. Ut enim hoc unum addam, etsi vel maxime formula mea idem exprimat, quod Newtoniana (et qui possent in diversum abire nisi alterutra falsa esset?) nullam video consequentiam, meam ab illa esse mutuatam; quid enim impediat, quominus una eademque veritas per vias toto coelo diversas obtineatur, Keilius nullam rationem allegabit.[94]
Sufficiant tandem ista, quae omnia limatissimo Tuo Judicio Vir Nobilissime submittere volui, ut si luce digna deprehendas, in Actis Lips. publicare possit;[95] neque me reluctantem habebis, si totius hujus Epistolae contentum typis mandare volueris mutatis mutandis et omissis omittendis. Consentio ut ante publicationem cum Illustr. Leibnitio communicetur, quia nollem eo invito aliquid mea ex parte in lucem prodiret: spero autem fore, ut neutiquam improbet quas praesertim congessi rationes validissimas, quibus quicquid ogganiat Keilius aliive sectatores, firmissime adstruitus, Newtonum eo tempore quo scripsit sua Princip. phil. Math.[96] nondum perspectam habuisse methodum differentiandi differentialia. Quod vero attinet ad formam sub qua optarem ut contenta haec prodirent, poterunt conservare formam epistolae, sed ita si placet mutandae, tanquam ab Anonymo, vel ab alio sive veri sive ficti nominis scripta fuisset: ut verbo dicam, rem totam ea qua polles prudentia dirigas, ne Keilius suspicetur, me hujus Epistolae scriptorem esse; ingratum enim mihi valde foret, a Keilio bile sua perfricari et contumeliose traduci ut solent ejus Antagonistae, postquam ille me hactenus satis humaniter tractavit. Quod superest Vale Vir Nobilissime, mihique favere perge.
Dabam Basileae a. d. VIII. Aprilis MDCCXVI.
Fussnoten
- ↑ Wolff, Christian, Elementa matheseos universae, Bd. II 1715 und 1733
- ↑ [Text folgt]
- ↑ Wolff, Christian, Mathematisches Lexicon, Leipzig 1716
- ↑ Im Manuskript steht irrtümlich "addidamentum"
- ↑ Weidler, Johann Friedrich, Exercitatio de phosphoro mercuriali praecipue eo qui in barometris lucet et eius rationibus una cum schediasmate in quo Apollonio Pergaeo promotae doctrinae curvarum gloria vindicatur, Vitembergae (Gerdes) 1715
- ↑ Bernoulli, Johann I Op. LXIII, Nouveau Phosphore, Par M. Bernoulli, Professeur à Groningue, Extrait d'une de ses Lettres écrite de Groningue le 6. Novembre 1700: Mém. Paris 1701 (1704), pp. 1-9
- ↑ [Text folgt]
- ↑ Im Manuskript steht "pedetentiam"
- ↑ Im Manuskript steht mit einer Korrektur "viteriorum"
- ↑ Cock, William, Meteorologia Oder Der rechte Weg Vorher zu wissen / Zu beurtheilen Die Veränderung der Lufft Und Abwechselung des Wetters In verschiedenen Landern: Darinnen auch entdecket worden die Ursachen warum die gemeine Calender-Schreiber so sehr fehlen; und die rechte Weise das Wetter zu erkennen klar und deutlich erwiesen wird / durch William Cock Philomathem. ... Aus der Engl. Sprach ins Teuthsche übersetzet. Hamburg: Liebezeit, 1691
- ↑ Hermann, Jacob (Na. 022), Phoronomia: sive de viribus et motibus corporum solidorum et fluidorum libri duo, autore Jacobo Hermanno Basil., Amstelaedami 1716
- ↑ [Text folgt]
- ↑ Im Manuskript steht mit einer Korrektur "saepisse"
- ↑ Es handelt sich um John Arnold aus Exeter (geb. ca. 1688), mit dem Johann I Bernoulli seit dessen Abreise aus Basel von 1713 bis 1719 im Briefwechsel stand. Die Briefe Arnolds an Johann I Bernoulli sind nicht erhalten.
- ↑ Anmerkung mit Bleistift am unteren Rand des Blattes von der Hand Johann III Bernoullis: "hic incipit Epistola pro emin. Mathem." Der folgende Text des Briefes wurde dann auf Wunsch Johann I Bernoullis von Christian Wolff anonym und in redaktionell bearbeiteter Form unter dem Titel Epistola pro eminente Mathematico, Dn. Johanne Bernoullio, contra quendam ex Anglia antogonistam [sic] scripta in den AE Julii 1716, pp. 296-315 abgedruckt.
- ↑ Jacob I Bernoulli, J. B. Analysis problematis antehac propositi, de inventione lineae descensus a corpore gravi percurrendae unisormiter, sic ut emporibus aequalibus aequales altitudines emetiatur: & alterius cujusdam Problematis Propositio: AE Maji 1690, pp. 217-223
- ↑ Leibniz, Gottfried Wilhelm, De Geometria recondita et Analysi Indivisibilium atque infinitorum ...: AE Junii 1686, pp. 292-300
- ↑ Johann I Bernoulli hat seine Privatlektionen zur Integralrechnung erst in seinen Opera von 1742 publiziert. Bernoulli, Johann I Op. CXLIX, Lectiones Mathematicae, de Methodo Integralium, aliisque, conscriptae in usum Ill. Marchionis Hospitalii, Cum Auctor Parisiis ageret Annis 1691 & 1692: Opera III, pp. 385-558
- ↑ Bernoulli, Johann I Op. IV, Solutio Problematis Funicularii: AE Junii 1691, pp. 274-276.
- ↑ Bernoulli, Johann I Op. CXLIX, Lectiones Mathematicae, de Methodo Integralium, aliisque, conscriptae in usum Ill. Marchionis Hospitalii, Cum Auctor Parisiis ageret Annis 1691 & 1692: Opera III, pp. 385-558
- ↑ L'Hôpital, Guillaume-François Antoine de, Marquis de Sainte-Mesme, Analyse des infiniment petits, Pour l'intelligence des lignes courbes, Paris 1696
- ↑ Gemeint sind wohl Giuseppe Verzaglia, William Burnet, John Arnold und andere.
- ↑ Leibniz, Gottfried Wilhelm in AE Maji 1697, p. 202: "Hic autem successus tam insignis Dominos Bernoullios fratres mirifice animavit, ad praeclara porro ope hujus calculi praestanda, efficiendumque, ut jam non ipsorum minus quam meu esse videtur." Bereits in seinem Brief von 1694 03 21 an Johann I Bernoulli hatte Leibniz hinsichtlich seiner neue Methode der Differentialrechnung geschrieben: "vestra enim non minus haec methodus, quam mea est." (Leibniz, Math. Schriften 1, p. 136). Leibniz wollte die Beiträge der Bernoulli in seinem geplanten Opus "Scientia infiniti" gebührend erwähnen. Dazu schreibt er 1694 06 07 an Johann I Bernoulli. "Quae cum ita sint, quod molior ego Opus, non magis meum quam vestrum erit." (Leibniz, Math. Schriften 1, p. 143).
- ↑ Leibniz, Gottfried Wilhelm, Nova methodus: AE Octobris 1684, pp. 466-473
- ↑ Im Manuskript steht Newtonum
- ↑ Cf. Bernoulli, Johann I Op. XXXVI, Principia Calculi exponentialium seu percurrentium: AE Martii 1697, pp. 125-133.
- ↑ Keill, John, Réponse de M. Keill, M.D. Professeur d'Astronomie Savilien, aux Auteurs des Remarques sur le Differérent entre M. de Leibnitz & M. Newton, publiées dans le Journal Literaire de la Haye de Novembre & Decembre 1713: Journal Literaire de la Haye, Tom. IV., 2 Juli und August 1714, pp. 319-358
- ↑ Leibnizens Commercium epistolicum ist als solches zu seinen Lebzeiten nicht erschienen. Erst 29 Jahre nach seinem Tod erschien [Castillon, Hrsg.]: Virorum celeberr. Got. Gul. Leibnitii et Johan. Bernoullii Commercium philosophicum et mathematicum. Tomus primus, Ab Anno 1694 ad Annum 1699 und Tomus secundus, Ab Anno 1700 ad Annum 1716, Lausannae & Genevae 1745.
- ↑ [Leibniz, Gottfried Wilhelm,] Epistola qua probatur Analyticam Artem primum a L... fuisse editam et post complures demum annos a N... Calculum Fluxionum fuisse productum. Bei dieser Flugschrift (8°, 4 pp.) handelt es sich um einen Auszug aus einem Brief Leibnizens von 1713 07 29, abgedruckt in: Deutsche Acta Eruditorum, 1713, pp. 950-954 (Ravier 72).
- ↑ Newton, Isaac, Philosophiae Naturalis Principia Mathematica, Londini 1687
- ↑ [Text folgt]
- ↑ [Text folgt]
- ↑ Bernoulli, Johann I Op. XC, De motu corporum gravium: AE Februarii 1713, pp. 77-95; AE Martii 1713 pp. 115-132
- ↑ Keill, John, Réponse de M. Keill, M.D. Professeur d'Astronomie Savilien, aux Auteurs des Remarques sur le Differérent entre M. de Leibnitz & M. Newton, publiées dans le Journal Literaire de la Haye de Novembre & Decembre 1713: Journal Literaire de la Haye, Tom. IV, 2, Juli und August 1714, pp. 319-358
- ↑ [Text folgt]
- ↑ Bernoulli, Nicolaus I, Addition de M. (Nicolas) Bernoulli, Neveu de l'Auteur de ce Memoire-cy: Mém. Paris 1711 (1714), pp. 53-56
- ↑ Newton, Isaac, Tractatus de quadratura curvarum: Opuscula Newtonii Nr. I, pp. 201-244, 1704 (kontrollieren)
- ↑ p. 39
- ↑ Im Manuskript steht "cujus"
- ↑ Newton verwendet in der zitierten Passage die Exponenten . im Manuskript von der Hand Daniel Bernoullis findet sich statt der Buchstabe . Im Druck in den AE, der nach Johann Bernoullis Reinschrift erfolgte, sind die Exponenten wie bei Newton mit wiedergegeben. Entsprechend wurden sie auch von dort in unsere Transkription übernommen.
- ↑ [Text folgt]
- ↑ Keill, John, Réponse de M. Keill, M.D. ... aux Auteurs des Remarques sur le Differérent entre M. de Leibnitz & M. Newton: Journal Literaire de la Haye, Tom. IV, 2, Juli und August 1714, pp. 319-358
- ↑ [Text folgt]
- ↑ Im Manuskript steht "tupographi"
- ↑ Horaz, Satiren, 1, 5, 100 f.
- ↑ Commercium epistolicum D. Johannis Collins, et aliorum De analysi promota, jussu Societatis regiae in lucem editum. Londini. Typis Pearsonianis, 1712. Oder: [Newton, Isaac], Commercium Epistolicum, 1713
- ↑ Catull, Carmina 20
- ↑ Nachweisen
- ↑ Nachweisen
- ↑ Newton, Isaac, Philosophiae Naturalis Principia Mathematica, Londini 1687
- ↑ Bernoulli, Johann I; Bernoulli, Nicolaus I Op. LXXXVIII, Extrait d'une Lettre de M. Bernoulli, écrite de Basle le 10. Janvier 1711, touchant la maniere de trouver les forces centrales dans les milieux resistans en raison composée de leur densités & des puissances quelconques des vitesses du mobile. Addition de M.(Nicolas) Bernoulli, Neveu de l'Auteur de ce Memoire-cy: Mém. Paris 1711 (1714), pp. 47-53; pp. 53-56
- ↑ Newton, Isaac, Philosophiae Naturalis Principia Mathematica, Londini 1687, p.263
- ↑ [Text folgt]
- ↑ Keill schreibt "c'est une erreur d'un genre tout extraordinaire".
- ↑ Terenz, Andria 1, 1, 99
- ↑ Der Kopist hat "feci" geschrieben. Johann I Bernoulli hat dies in "vidi" korrigiert, ohne jedoch "feci" zu streichen.
- ↑ "Cur aliquid vidi? cur noxia lumina feci?" Ovid, Tristiae 2, 103-104.
- ↑ Newton, Isaac, Principia, 2. Aufl.
- ↑ Hayes, Charles, A Treatise of Fluxions: or, an Introduction to Mathematical Philosophy, London (Midwinter & Leigh) 1704
- ↑ Keill, John, Réponse de M. Keill, M.D. ... aux Auteurs des Remarques sur le Differérent entre M. de Leibnitz & M. Newton: Journal Literaire de la Haye, Tom. I,. 2, Juli und August 1714, pp. 319-358
- ↑ Bernoulli, Johann I Op. XXI, Additamentum effectionis omnium quadraturarum & rectificationum curvarum per seriem quandam generalissimam: AE Novembris 1694, pp. 437-441 (?)
- ↑ [Text folgt]
- ↑ [Text folgt]
- ↑ Im Manuskript steht "describentiam"
- ↑ [Text folgt]
- ↑ In der 2. Auflage der Principia ist der Text auf p. 264 Mitte bis p. 265 Mitte von "praeterea et latus quadratum..." bis "...solvetur problema" weggelassen, und auf p. 263 durch einen drei Zeilen umfassenden neuen Text ersetzt. Für Einzelheiten cf. Derek Whitesides Kommentar in: The mathematical Papers of Isaac Newton, Bd. 8, Cambridge 1981, pp. 312-424 und Guicciardini, Nicolò, Reading the Principia. The Debate on Newton's Mathematical Methods for Natural Philosophy from 1687 to 1736, Cambridge 1999, pp. 233-242
- ↑ Bernoulli, Johann I Op. XC, De Motu Corporum gravium, Pendulorum, & Projectilium in mediis non resistentibus & resistentibus supposita Gravitate uniformi & non uniformi atque ad quodvis punctum datum tendente, et de variis aliis huc spectantibus, Demonstrationes Geometricae. Continuatio Demonstrationum, quarum initium Mensi superiori pag. 77 seqv. insertum est: AE Februarii 1713, pp. 77-95; AE Martii 1713, pp. 115-132
- ↑ Der hier zitierte Text findet sich nicht im angegebenen Brief Hermanns sondern in dessen Brief an Johann I Bernoulli von 1714 10 01.
- ↑ Pierre Varignon an Johann I Bernoulli von 1714 07 16, UB Basel, L I a 670, Nr. 118{*}
- ↑ Abraham de Moivre an Johann I Bernoulli von 1714 06 28, UB Basel, L I a 664, Nr. 10{*}
- ↑ [Text folgt]
- ↑ [Text folgt]
- ↑ Hermann, Jacob Na. 022, Phoronomia: sive de viribus et motibus corporum solidorum et fluidorum libri duo, autore Jacobo Hermanno Basil., Amstelaedami 1716, p. 394
- ↑ [Text folgt]
- ↑ Johann I Bernoulli an Jacob Hermann von 1715 12 21, L I a 659, Nr. 21.
- ↑ Jacob Hermann an Johann I Bernoulli von 1716 02 19. Hermann publizierte in der Tat den Beweis Johann Bernoullis als Auszug aus dessen Brief von 1715 12 21 im Anhang zu seiner Arbeit Na. 021, De Vibrationibus Chordarum tensarum Disquisitio: AE Augusti 1716, pp. 375-376.
- ↑ Bernoulli, Johann I Op. LXXXVI, Extrait de la Réponse de M. Bernoulli à M. Herman, datée de Basle le 7. Octobre 1710: Mém. Paris 1710 (1712), pp. 521-533.
- ↑ Keill, John, Observationes in ea quae edidit Celeberrimus Geometra Johannes Bernoulli in Commentariis Physico Mathematicis Parisiensibus Anno 1710 de inverso Problemate Virium Centripetarum. Et ejusdem Problematis Solutio nova: Phil. Trans. Nr. 340, September 1714, pp. 91-111 (datiert ?November 24. 1713?)
- ↑ Nachweisen
- ↑ Johann Bernoulli gibt an der genannten Stelle auf pp. 524-525 einen Beweis zu dem im Folgenden zitierten Lemma von Newton, der nach seiner Ausssage "plus simplement" geführt werden kann. Bernoulli, Johann I, Op. LXXXVI, Extrait de la Réponse de M. Bernoulli à M. Herman, datée de Basle le 7. Octobre 1710, Mém. Paris 1710 (1712), pp. 521-533.
- ↑ Die Passage von "ita sonans" bis "hoc lemma" ist in der gedruckten Fassung dieses Briefes in den AE weggelassen.
- ↑ Newton, Isaac, Philosophiae Naturalis Principia Mathematica, Londini 1687, lib. I, sectio VIII, prop. XL, theorema XIII, p. 125
- ↑ [Text folgt]
- ↑ [Text folgt]
- ↑ [Text folgt]
- ↑ [Text folgt]
- ↑ [Text folgt]
- ↑ Varignon, Pierre, Des forces centrales inverses: Mém. Paris 1710, p. 533
- ↑ Varignon, Pierre, Des forces centrales inverses: Mém. Paris 1710, p. 533
- ↑ Im Manuskript steht "lusculentum"
- ↑ Varignon, Pierre, Des forces centrales inverses: Mém. Paris 1710, p. 543
- ↑ Newton, Isaac, Philosophiae Naturalis Principia Mathematica, 1713
- ↑ Keill, John, Observationes in ea quae edidit Celeberrimus Geometra Johannes Bernoulli in Commentariis Physico Mathematicis Parisiensibus Anno 1710 de inverso Problemate Virium Centripetarum. Et ejusdem Problematis Solutio nova: Phil. Trans. Nr. 340, September 1714, pp. 91-111 (datiert "November 24. 1713").
- ↑ Hier endet der später als Epistola pro eminente mathematico gedruckte Text.
- ↑ {publiziert von Christian Wolff}, 1716 07 00 (Nr. 201), Epistola pro eminente Mathematico, Dn. Johanne Bernoullio, contra quendam ex Anglia antogonistam [sic] scripta: AE Julii 1716, pp. 296-315
- ↑ Newton, Isaac, Philosophiae Naturalis Principia Mathematica, Londini 1687
Zurück zur gesamten Korrespondenz